The rate of growth of worker, drone, and queen larvae of the honeybee, Apis mellifera Linn

Henry A. Stabe
Iowa State College

Follow this and additional works at: http://lib.dr.iastate.edu/rtd
Part of the Entomology Commons

Recommended Citation

Stabe, Henry A., "The rate of growth of worker, drone, and queen larvae of the honeybee, Apis mellifera Linn" (1929). Retrospective Theses and Dissertations. Paper 14679.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600
UMÍ

NOTE TO USERS

This reproduction is the best copy available.

UMI'

TEE BATE OF GRONTE OF HORKER, DRONE

 AND QUEEN LARVAE OF THE EONEYBEE, APIS MELLIFERA LINN.by

Eenry A. Stabe

A Thesia Submitted to the Graiuata Faculty
 for the Dagree of DOCTOR OF PEILOSOPHY

Major Subject Apiculture

Approved

Signature was redacted for privacy.
In charge of Major Wory
Signature was redacted for privacy.
Eazi of Vajor Dopartment
Signature was redacted for privacy.
Grajuato Dean

UMI Number: DP14548

UMI

UMI Microform DP14548

Copyright 2006 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road
P.O. Box 1346

Ann Arbor, Ml 48106-1346

TABLE OF CONTENTS
I. Introduction p. 4
II. Eistorical p. 4
III. Experimental p. 5
A. Betrode of Procedure p. 5

1. Worker Larvae 1928 p. 6
2. Worker Larvae 1929 p. 7
3. Drone Larvae 1929 p. 12
4. Ouenn Larvao 1928 p. 13
5. queen Lervas 1929 p. 13
B. Resulte p. 15
6. Weight of egge p. 25
¿. Rate of growth of Worker Larvas p. 15
7. Rate of growth of Drone Larvae p. 19
8. Rate of growth of oumen Larvao p. 20
IV. Digcusai on p. 22
A. Comparino n of Growth Rate of Fiorker and Quean Larvae p. 24
B. Age at which maximum ite in rached p. 25
V. Conclusiona p. 27
VI. Sumary p. 28
VII. Acknowledgrenta \& p. 30
VII. Literature Cited p. 31
IX. Grapha I to VII p. 32
$-3=$

X. Tables

Table I	p. 39
Table II	p. 41
Table II	p. 48
Table. IV	p. 53
Table IV a	p. 75
Table V	p. 77
Table V a	p. 105
Table VI	p. 106
Table VII	p. 107
Table VIII	p. 108

INTRODUCTION

In this work an attempt has been made to obtain accurate information on the rate of growth of worker, drone, and queen larvas of the honeyber, Apis mellifers Linn. Aaide from the interest from the sclantific point of Fiew, it was thought that a comparison of the rate of growth of worker and queen larvas would be of interest to the queen bresder.

BISTORICAL

Until comparatively recent times, little or nothing was known concerning the rate of growth of honeybee larvas. Creshire (1886) states in one place that the mature larrae waigh noarly twice as much as the adult bae inio which it transforms. In anothar place he makes the statement that the honeybse increaseg about 1400 times in woigl during its larval 1ife.

The firat important work on the rate of growth of honegbee larvae wes by Straus (1911). Eis reault, with worker larvae may be briafly tabulated as followa:

EGGS

LaRVAE

mg.	1 day mg.	2 days mg.	3 days mg:	4 days mg.	5 days mg:	6 dag mg.
0.06	0.3	3.4	33.3	100.1	134.5	153.2

His results with drone larvae may be tabulated as follows:

LARVAE

$\begin{aligned} & 2 \text { days } \\ & \text { mg. } \\ & \hline \end{aligned}$	$\begin{gathered} 3 \text { days } \\ \mathrm{mg} \end{gathered}$	$\begin{gathered} 4 \text { days } \\ \mathrm{mg} . \end{gathered}$	5 to 6 daya mg.	$\begin{gathered} 7 \text { deys } \\ \text { mg. } \\ \hline \end{gathered}$	$8 \text { days }$	$\begin{gathered} 9 \text { days } \\ \mathrm{mg} . \end{gathered}$
3.32	16.50	142.00	$\begin{aligned} & 192.00 \\ & 211.00 \end{aligned}$	300.0	$\begin{aligned} & 405.00 \\ & 376.00 \end{aligned}$	$\begin{array}{r} 343.00 \\ 347.00 \\ \hline \end{array}$

Nelson and Sturtavant (1924), using a mothod aimilar to that of Straus on worker larvae, obtained the following data:

HORKER LARYAE

| day
 mg. | 2 days
 mg. | 3. days
 mg. | 4 days
 mg. | 5 days
 mg. | 6 days
 mga |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.650 | 4.745 | 24.262 | 93.378 | 144.85 | 249.960 |

EXPERIMENTAL

The experimental work was done during the aumers of 1928 and 2929 In Zoology Department of Iowa State College, Anss, IoNs. Italian baes from tha College Apiary were uaed. Standard ten-frame hives were uned and atrong colonias in two or three hive-bodies were gelected.

METHODS OF PROCFDURE

The firgt necessity in this Experiment was a method of obtaining larvae of known ages in conaiderable numbers. The greater the difference in age of the individual larpas of any given age group, the leas accurate tha results would be. Since the mothods of obtaining tho larvae In the two years and with the differsnt kinds of larvas were very
different, the diseusion of methoie can be conveniontly divided inte four parts: (1) Worker Larvae (1928); (2) Worker Larvae (1929); (3) Drone larvae; and (4) Queen larvae.

Worker Larvae 1928

A twombtory obgervation hive was used. Each story had a single frane with a queen excluder placed in between them so that tho quesn could be confined to afther story at will. The colony was built up by the addition of brood and bees until it was atrong onough so that the beeg would occupy both frames. The queen was in the lower frame for the greater part of the time and laid normally there. A frame whick had been above an excluder in a normal hive for more than three daye was removed and the bees shaken off. The frame was so gelectiad that it had empty cella and unsealed brood but no erg. The frame in the upper atory of the ohserfation hive was remover and the bsea shatem in front of the hive. The frame, containing unsealed brood but no eggs, was placed in tre upner atory of the observation Eive. One or tifo hours after, when tie bees ked settied down, the queen was runted out on the comb in the lower story and removed by opening the glass wall of tha hive and picking ber up with the fingers. She was placed in the upper story with as little confuaion as posible. She was kept under observation until she laid the firat eggs. The time of laying the first egg was recorded. Three kours after laying the firat ogg the quean was pluced below. About trirty-aix hour after the queen wag firat placed above ske was again placed above, kept under observation until ahe laid again and removed and placed below three houra after

$$
-7=
$$

laying tre firat egg.
The frame nise now removed from the observetion colony; the bees were ahaken off; tha frame was marked with a number and was placed over an excluder in a Mulleins quean rearing kive witl otker frames of brood. Anotrer frame containing ungealed brood and empty cells, but no egga, was placed in the upper atory of the observation hif ve and more egea of known age were obtained in the sams way.

The frames placed in the kulleins queen rearing kive were removed at definfte intervals so that groups of larvae of cortain sges were obtained. All of the larve produced inoti eggs ladd in the three kour pariods pare waighad at the gans sitting in order to elimi aate the effects of change of onvironment dus to the ramoval of the frame and from the live. The lartae ware removed from the frome by means of a trancferring needle in the case of the smeller ones, and, by means of a pair of forceps, in the case of the larger ones. Adhering food was removed by wasting tre larvae in water and the larrae wore tren dried by placing them on a blotter. Thay were weighed in watch: glasses in groups of five or ten, depanding on the size, by means of a cremical balance accurate to one-tenth milligram.

It was planned to ootain groups of larvae at age intervals of six rours from in to 144 hours, but due to unforeasen conditions, the geries could not be completed. Larvae from two queens were usad. The results obe tained are recorded in Tables II and III and will be discused in conjunction the results obtaingi in 1929.

Forker Larvae 1939
In the sumer of 1929, a different method of obtaining larvae of known
ages was deviged. A two story observation bive with a quen excluder between the upper and lower story was again made up and strengthened by the addition of brood and bees until the bees occupied both tle upper and lower frames. The upper story in addition to having glase sides was prom Fided with screen wire, twelve meskes to the inch, on the inside of the glass. When the glase was removed the screen formed the wall of tha upper story. It was found that, if the operator were careful not to brecthe on the bees, they would continue treir work without interruption wien the glabs was rerroved. Small sticks of wood were cut of such size that trey coull be insertel tigftly into the meshes of tre screen with their innar ond ontering the cells of the comb for about one-half incl. As the guean loft a cell after laying, one of these sticks was insarted into tha opening of the cell through tle screen wire. The screen served to hold the atick which was used only as a temporary mark. When the queen finished laying a garies of oggs and rested, auch of these cella was mayred by meang of a quick drying lacaver applied with a gtick to the side of cell. It was found that the lacauer would remain on tre ieli of the cell for several weeks, and after drying, it did not interfere in arykay witr the work of the bees.

It was desired to obtain groups of larvae at age intervals of gix kours from six hours to 144 hourg. A frsine containing eggs and unaesled brood and some empty cells was taken from the brood-chamber of a strong hive, designated Colony B. The bees were ar:aken off and tre frame was pleced in the upper atory of the ohasrvation live. After the bees kad occupied the nev frame, the queen was placed above and kept under constant
obgervation for a period of two kours after laying the first egg. Aa the quaen left a givem cell, it wae temporarily marked by moans of e stick Inserted into the opening of the cell through the screen.

Later the side of cell Hes marked by means of tre lacquer as statad above. After the two hour observation pariod, the queen remained in tre upper story and continued to lay in the comb. Siz and onemalt hourg after the beginning of the first observetion period, the quesn wes observel for another two pariod rours and cellamarised as above. Again trirteen tours and nineteen and one-Fghf bours after the beginning of the first obm sarvation perioi, tre colis in prich tho quesn laid were marked as above. The following illuatrations will aerve to show the method of marining used.

It vas found thet mhen grean or red lacquer vaf uged, tha merkad cell could be more easily found than when mite wes ised ani the former colors were adopted.

It was found thet, on the average, the gueen would lay ebout fifty egge in a twombour poriod. The actual numbers ranged from thisty-five up to aixty-fivo. It was nocessary to use graat care in making tro cell in in order not to excita the quean.

At the end of the fourth two-hour obegrvation period the frame was carofully removel from the upper story of the obserpation bive and another frame, containing eggs, and ungealed brood and empty colly, taken from the brood-chamber of Colony B was placed in tre obsarvation hi ve dimediataly. The quesn was remored from the freme and placed in the upper atory of the
obsarvation hive on the new frame. The bees were shaken off in front of the observation rife ans the frame, msrked I, wis placed in tre brooichamber of Colony B. The beas in the observation hive occupiad the new frane in a ghort time, and, within an houx, the quesn was slreaiy layirg.

About twenty-six kours efter the beginning of the figet ojservation pertod on frame I, the quean wsa again observed for two hours and the cells marked as before. Again six and one-kalf, thirteen, and ninatoen and ond-half kours after the firgt ob:ervation period on this frome, the queen Qas obsurvad for tro hours and the cells marked as bafore. The frame Nag then rewoval and marked II. The beas ware skaken off and tis frame neg placed in the brood-chamber of Colony B. Another frame from the broodm chsrber of Colony B was placed in the uppar gtory of the obarvation hive. This process was ropeated until twenty-four serios of eges on six frames at age intervals of six hours wara obtainad. Care was taken to ar range the obsarvation periois so that the larvas on frames I, II, and III could be waigres on one day and the larvae on frames IV, V and VI on the next iay. According to Nelson (1915) the incubation period of loneybee ogge ia approximatoly seventyosix hours. Accordingly frame I was removed from the hive nine days and four hours after tre begiming of the ilirat obarvation psriod. Tha larvas in tre cells marked during the first obgervation pariod wera waigtad firat. The wElglings were mato on chemical balances accurate to one-tenth milligram, tho larvae belng plscel on watch glasses. Adbering food was removed by vabling the larvas in water. The larvae were then dried by placing them on $=$ blottor. After waighing each of the larvae
in the firgi paries of markod colle, those in tha seconi asiag nare walghed and so on until all of tho larvas in tarkei cells on thit irane had boen volghed. Trane II was then removed and tile larvae wero weighod as sbova. In the older age groupe as many of the larves as time parmitted wers waighod individually, the remainiar being veighed in groupa of five. In the age groups twenty-four to forty-iwo houra inclusive ail of the larvia ware weighed in groups of five mijia in the age groupa of aix to eighte日n hours, they wore waighed in growis or ten, fusults are racorded in Tabləв IV and IVa.

Some of tie advantages of this metroi of securing leirvas of known age over ule former method nizy be liatsi as followa:

1. Maximum age difference in the egge is two hours instesd of three.
2. Larvae are rearad in the brooi-chamber inatosi of over an axcluider.
S. Larvae are normally diatributed over the frame baccuae the queen ig laying in the corrb for a lomer period.
A. A greater number of larvae can be gacured in a akort3r pariol of tino.

Sowe of the iladvantages of this methoi may be listed as followa:

1. The queen may not ley in a coll or she may lay in a cell witch alrosiy containad an egg or a atick of wood usel in merang the cell may doairoy tho egg. In order to raduce the error from this zourco as muct: ag poasible tha marixed cells were quickly obsarved before eacl frame viag placed In the brood-chamber of Colony B. Whan no egg or more than one was found in a marked cell, the mark pas doatroyed by removing tho marked part of the cel: rali. In all cases very tow marked celia were found which containad no egge or more than one.

Drons Larves 1993

In securing drone larvae of known ages the following method was ung. A frsme containing drone foundation was ingerted into the broodcramber of setrong hive, In a day or two the bees hai drawn out the foundation and the queen hat ladd egga in same of the cella. The freme wes removed and all of the egge were destroyed. The frame wan then replaced and removed twelve bours later. All cella, usually up to 100 , that contained egga ware markei with laçuer e. gystem of marking similar to that uned with worker larvas being used.

Any eggs remaining in umarkad calls ware deatroyed and tha freme was replaced in the hive. Twelve hours later the freme was ramored again and the unmarked cella, usually up to ons bundred, were marked with laçuer. This was continued until fiva lots of ages on one frame ware obtained. The first four lote were marked as with. the worker larvae and the fifth lot was marked with a differently colorad lacquer. This process was continued with otber frames until a total of twenty lote wers obtained. The frames were renovad at such intervals and the larvae weighed, that eighteen lots of larvas from twelve to 216 bours of ags wera obtained. In two age groupe, those of 156 and 180 hours two different lots of larvae werg becured. The weighings wiere made as near the midale of the egg-laying period as possible; that is, for the twentym four hour age lot, the weighings were made four days and nine hours after the como was placed in the brood-chamber. In the older lots of larvae from twenty to twanty-five larvae ware weighed singly, the remainder being weigher in lots of five. For the younger lots ofther five

$-23=$

or tan wars witgel at a tims. All of the lervae in the markal aalla nors woighad.

The remats ners recorded in Tables V and Vo.
Suaun Larpas 1923
During the mumer of 122 rorisar larva3 of knom agas ners obtianad
 the boja started quagn colla arount nome of trese larvas of known agz.

Cueen Larvaa 1025

Becauns of tha amall mamors of gusen larvas obtainad during the simmex of 1938, it ras decidad that it roul. be noceasary to uat ti:o DooIftie sethot of queen resring. It wan elso trought atviaakis to use nore than one ilve to rasar the larvea in. Tres lifves, A, B and C vere prepared. A ana C ware atrong colonise in tragetan-ireme fivem boilea. The guagn veg placel in the bottom Fivebody. A quaen oxcluder nas placel cyor tria. Tha necont hivabody, containing empty combs and combe of koney, wae placei on this. The tririlivsbody contajnea combs of hongy and brood. The frams contaling the grefted larvae werf naced betwogn combs of broci in trie uppar kivobody.

Colony B wos a Malleins queen rasing hive which consista egsentially of a 30-frans rivebody il vided into thrse tan-frume comartmants by means of tho queon ercluderg. One queen with brooi ma been wes placed in gach of tris. two and compartmante. The milile compartinent ueg filled aitt emoty comba. A tanmerms livaboily containing franes of brood and wonay ras placed ovar tre midis compartment. The frames contining
grafted larvae were placed in this hiveboly between frames of brooi. Covers ware placed over the end compartments.

In obtaining larvae for tranaferring the same obaervation Li ve and the same queen were used as ware for the worker larvae. Batween 3:30 and 4 P.M. eack day the frame in the upper story of tie obasrvation hive was removei and replaced by another which had at least 800 empty cellg. Tye queen was put back in the bive and the bees wers ablaken in front of the hive and the frame, proparly marked, was placed in the queen rearing part of the Mulleins hive. Trree days later between 1:30 and 2 P.M. most of the eggs kad hatched. The unbatched eggs were grafted into quesn cells cups. If there were an insufficient number of eggs, the malleat larvae were used. Sixteen cell cups on one bar were placed in asch of the three queen-rearing hives. This was repeated for fiva more days at the end of which time each colony had gix bars of sixteen cell cups each. The weighing was begun about one A.M. on the gixth day from the time grafting was begun. After onehalf of the larvas from each grafting ware weighed at this time, the remainder being weighed beginning at one P.M. on the same day. This resulted in securing lots of queen larvae at age intervala of twelve kours to 144 hours. This process was repeated for six times. After the third time, a fourth: colony, D, aimilar to A and C was addod so that sixty-four cells ware grafted every day. Beginning with the fourth time only larvaa were used in transforring because, on two successive days, the bess had failed to accept a aingla cell when egga only were used.

All of the larvaa, except thase twelve tours old were weighed aingly.
-15m

The larvae twalve hours olil wire waighed in groups of five. The rasults are recorded in Table VIII. They are recorded separately both as regards the dato of woighing and the colony that roared trem.

RESULTS

Data in tria experiment can be conveniently pregented under tha following readinga: (1) Weight of eggs; (2) Eate of grovith of worker larvae; (3) Rate of growth of drone larvas; and (4) Hate of grozth of quesn larvae.

Weight of Eggs

One isunired naply laid aggs ware weighed in lots of twentymive on August 32, 2029. The total waight of the hundred was 14.7 mg . or an average weight of 0.147 mg . as recorded in Table I. One hundred eggs, approzimate age tronty-four houra, weighed 13.8 mg . or an aversga of 0.138 mg . Two day old egga weighed 0.120 mg , on th:e average while thres day old egge avaragad 0.119 mg . in weight.

These data indicate a reduction in weight of honoybee eggs during ine cubation amounting to about 19% of the original weight.

Rate of Growth of Worker Larvae

Data secured during the summer of 2928 do not represent a comnlete series of lots at age intervala of six hours. Furthemore two queens were used in obtaining the eggs. It geems likely thet thare is an heraditary difference in growth rate of honeybee lervae. Also the larvae from queen A were waigred during the sarly part of Augagt when there was a nectar flow

While those from Quean B ware wighed Auring ti:e latter part of Auguat during a deartk. Alpatov (1929) bas grow trist a coneiderable part of the ifferences in toneybees is lue to seasonel variation and Nalgon and Sturtevant (1924) rave shown that deartl of nectar reauls in decrasae in weight of the older larvae. For these reabons the data sacured in 1928 on worker larvas kave been treated separately. Date from dueen A are recordod in Tablo II and those from queen B, in Tablo III.

Considerable differences in avorage weights of groups of five larvas in any given age group are in eviaonca. For instance, in Toble II, age group tlifity hours, the mean woight of eighty larvae is 1.57 mg . The minimam average weight for five larvae is 0.88 mg . while the marimam is 2.04. Again in the age group sixty hours, the mean weight for geventy is 8.33 mg . whilo the winimum for five is 7.12 mg and tha maximum ia 10.30 mg. The The zane is true of the data in Table III. In the age group aixty-six houra, the msan seight for thirty-five larvae is 16.68 mg . while the minimum for five is 12.76 mg , and the maximum ia 18.94 mg . While the go data have not bean otatistically treatad, it ia obvious that these differencea are due to somatring besidea clanca.

In this connection it might be nell to observe that, according to the nethoi of securing the eggs for the lifferent age groups, there 1 a a probable age diffarence of epproximetely three hours in tha age of the eges. Furtremore the incubation period of individual egge probebly veries as this les been found to be true in other gpecies of insects. Th:s would make the posaible age difference of the larvae somewhat more than thrge hours. While
this differance in aga is ingufilcient to account for the difference noted, it is merely brought forward leare to ako: that factora other thar indivilual variability are concernei in the variatione in weight recoriad.

During 1929 the experiment was arrangei so as to oliminata, as far as practical, causes of variation otrer than inierent inaividual variation. All of the larvae in the series ware obtained from egge latid by one queen. Obaervetion periods on egg-laying were arranged go that ell the laryne were weighed on two consecutive daye in order to aliminate abacnal variation. It ghould be racalled, howevar, that thare ia a diffarence of two koura in the rge of eggs in a given age lot. Furthermora, the difference in incubath on of individual ag:s would probably sdi anotk:er hour. Also all inidivium ale of a given lot were not weighed it the same thatant ugualy from thirm ty to sixty minutes slapaing from tre time the first was weighed mintil the last. This allows for a maximu age diffarence of from there to four fourf, \#hich is mere than one-half the age interval betwean grcups and would serve to account for considerable of the variatione noted.

Pesults are racorded in Table IV. As far as time permitted, the oldor larvas beginning with those forty-eight hours of aga ware welghed singly. These individual weights, tegether witr some statisticel constarita are recordad in Table IV a. The formula uasd in calculating the probable error of the mean is. $6745 \frac{\sqrt{E x^{2}-\xi x(y)}}{m-1}$ where x ia the observed value; M is the mean and n is the number of observations. Twe formula ured to calculate the percentage incracae in waiglt is mean peight of given group minus mesn waight of previous age group divided by mean weight of previous age group multiplied by one hundred.

These results gion that, for the firat two days, the increase in Faight is comparatively glow. At six hours the mesn weight ia only 0.17 "ᄑg. At twalve homrs it is 0.29 mg ., eighteen hours 0.36 mg ., while at fortymight fourn, it if 2.67 mg . After this the increase is relatively rapid so thsit at 114 hours the maximum average, 159.06 mg . 1 s attsinsd, In eraph I these weighta are plotted against the age. The resulting curve is more or leas S-shepad with aeversil irrogulerities tha probable gignificance of which will be ilacusced later.

Referring to Tablo IV a, in whict the initividual weighte are recordad it is seen thet the mean weights of trs different age groups agreo closeIy witl the aversiges beasd on all of the observations except in thres instencer. At fifty-four hours the mean based on the gingle observationa is 0.75 mg . larger then that begei on all of them. At gixty-six hours the difference is 2.20 me, , and at 103 hours it is 4.23 mg . Since tre lervaco for tre individual waighta were renoved and weighei firat and then tre remaining larvae, in groupa of five, it followa that, in trose tresa instances at least, there was a eelection for lergor size during the firat vial zhings. Tese differences do not materially affect the resulte.

Referring to Table IVa it is seen trat tre coefficient of verifbility varias within wide limits. At forty-aight hours, it is 17.80 te. 17%, riaing to $20.70 \pm 2.30 \%$ at fifty-four hours sni to $29.94 \pm 3.25 \%$. It then fislis to $11.58 \pm 1.24 \%$ at sixty bours. At sixty-six hours it is 13.18 a 1.37% whils at eighty-four hours it is up to $29.82 \pm 2.99 \%$. At ninty hours it is down to $12.12 \pm 2.30 \%$. In greph II the coafficiont of vario
shility is plotted ageinat tro age ari its variability is alell brougt out. Griph II also brinps out tre grost differences in percertege increase in noigit over previous nefght. Paaks occir it twelve kours, thirty kourg, forty-alget fours to sixty roure, aighty-four tours to 102 lours. It skoinll in noted trat the larger coafficients of variability occur at nearIy the sate tiwe as the larger percontage increases. The snaller coefficiente of variability et sixty-aix loora and ninaty hours correa"ond closely to the lowar percentare increases except that there aprears to be a lag of six hours in the lattar..

Rate of Growth of Drone Lorves
In Table V iare recorded the dation drone larvae. Beginilng with larvae sixty hours of age a number of larvae in aacl age group nes weighed individually. Trese weights gra also recoried saparately in Table Via. It should be reciallen, at this point that there is a possible gag ifference of twelve hours in the egge of a given group. Tra moan wight of the larvea weighai Individually in most instances agreen closely with the mean based on all observations. However, at 108 rours, 1.5 hours, and 192 kours, the ilfferancaj between the two maans are comparatively lirge but can be expleined on the basis of selection as was explainad iofore in tre case of worker laryea.

With the irone laryae as witt tle worker larvae, increase in voight ia slow at first. At trelve hourb the icean weight is 0.35 mg ; 34 hours, $0.39 \mathrm{mg} \cdot \mathrm{i} 36$ rours, $1.08 \mathrm{mg} \cdot \mathrm{f}$ forty-sight hours, $2.01 \mathrm{mg} \cdot \mathrm{i}$ sixty houra, 3.30 mg. Beginning at about gixty hours the increase in waight becomen
more randi until a maximun avarsoe weigkt of 383.03 cg . ig nttained at 180 hours. In eraph III thena weights are plottod againet the are. An Ssliapad curya results.

In grajk IV the percantege incraase and coafficiants of varicoility are plotted against the age. Tre parcentage increase varies considerably from one age group to tre next esnecislly during the first four days. Trereafter it drops off gralually excent for a glight rise at 1 is hours.
 and decreages gradually in the oliar ege groups. Thars seame to be no corralation betwaen kigh cosfficiante of virisbility and high percantege increases es was tha case with workar iarvee.

Rate of Grontr of Queen Learvae
In arriving at an estimate of the orobable age difference of individual queen laryae, it should be rec:llad thet juring the last falf of tre time only larvae wore selacted for grafting. Theae wers taken from a frame which contained larvae from zero houra to abcut eightoen hours. In Table VII are recordeit the weighta of seventy suct larvie in lots of fiva. Theag larvie were selacted under conditions identical to thone under ahich the lervae were gelecteif for grafting. The average moiglt of the soventy Igrpe was $0.113 \pm 0.007 \mathrm{mg}$. Tre ostimated probable error of a gingle Iarvae is $0.007 \times \sqrt{5}$ or 0.016 mg . As suming a probable range of \pm four P. E. it is seen trat the probabio maximam weight of a lervae gelected was 0.175 mg . Since the average welglt of workar larvas at sik hours of age is 0.17 mg, $1 t$ asema likely that the maximurn age difference of 1 arvae selected for grafting was approximately six hours. During the first rislf of
th o time both eggs and larvas were usod no it is likely that the maximum age difference was probably somert at more.

In Table VI are recoried the reights of twenty-gix queen larves reared in cells stisrted naturally by the bees. The everage weight of ton larvae at 120 hours of ags was 263.3 mg . which is somewhat less than the average weight at this age obtained in 1929. At 156 hours the evarage of aixtoen larvas wes 24シ. 6 mg .

The resulta obtained in 292 are recorded in Table VIIT. With quesa larvas as with worker and irona larvae tha increase in woight is glow at firgt and bacoms rery ravil after the beginning of the fourtr day. In graph ∇, the waight has baen plottad againgt the age. The resulting curve 1a S-ghaped. The coefficient of variability at twenty-four is 44.07 あ 3.61\%. At thirty-six hours it is down to $21.09 \pm 2.62 \%$ and at forty-sight hours it is $33.55 \pm 2.38 \%$. It tands to remain high until about the end of the fifth day after which it fellg rapilly and at 144 hours it ia only $5.26 \pm 0.39 \%$.

The percontage increases over the grevious weight varies videly. Bew ginning at 159% at twelve hours it falls to 106% at twenty-four hours and than riass to 132% at fortymeight houra. At gixty bours it falls to 51% and then abruptly to 265% at oighty-four hours. Aftor this it falls ram pialy until the larvas roach thoir maximum siza except for a amall rise at 108 rours. Both the coofficients of variability and the percentage increases are plotted on graph VI.

Here again as with the drones there sesm to be no relation between
the high coefficients of variability and the high percentage increases. They seem to fluctuate independentiy of each other.

DISCUSSION

Bertholf (1925) has ghown that the koneybee larvas moult at twelve to aighteen hours, thirtymaix houra, sixty hours, and aighty-four hours. The fifth moult doas not occur until the end of $t \cdot$ oight day of larval life. Yagi (1926) and othera tave ghoun trat juat befora and during the moult in insects there is a reduction in the rate of growth. Referring to graph II it is noted that at eighteen and thirty-six hours the parcentage increases are relatively low being 24% and 27% respectively wisereas at twelve and thirty hours they are relatively higl being 71\% and 94% respectively. Since these percentagea really measure the rate of increase during the six bours preceding tre age at whick they are liated it follows that they fit in very well with the assumption that tre growtr. is reduced before and during moulting.

At forty-eight hours the percentage increase in $83 \%_{j}$ at fifty-four hours, 94%. At aixty bours it is 89% and thereafter it drops rapidly until at seventy-two hours it is only 23%. Since tre thiri moult occura at about sixty hours it would seem thet the reduction in growth rate occurs after moulting. However, aincs the percentage increass in reality measures the growth rate during the preceding aix hour period and there is a probable age difference of four hours in the laryse, it followe that there would be
a lag in the parcentege increase as compared with tre reduction in growth rate. Thia in brought out more claarly perhapa in the comparison of tho coefficients of variability. Since these are measures of veriability they would bs greatest during the perioda of most rapid growth becsome a given age difference in individuals would result in a greater actuad variation In weight. As the ulder larvas attain the age at vifich the reduction in grozth: rate occurs, the younger larvaa inth thair more ranid growth rato would reduce the individuel differences and thus reduce the coefficient of variablity. This is well shown in granh II. Tre coefficient of veriability Is at its maximun at sixty houre and drops to 1 ta minimum at sixtyesix hours. This illuatretes very well the lag of the percentage incresse as compared with tie actual reduction in growth rate. From thsge data one would expact that the third moult would occur at about gixtymsix hours but gince the ages of the larvas vary somewhat it is not possible to ateta the eract time of the third moult.

It sems likely that, if the perioda between peighings had been shorter, that is two or thres hours instead of six, the relationslip batwaen the growtr rate, as indicated by the percentage and coeificient of variability, and the actual growth rata wouli been closer and the reducifon in apparent growth riste would have colncided more nearly with the moulting period. This is brought out by the fact that, in the cese of drone and queen lervas where the interval between weigifinge is twelve hours, there is no relation between the changes in growth rate as indicated by percentige increase and the moults.

The a x re relationships hold with the fourt moult which, according to Berthoif, occurs at about oigity-four hours. After the trifi moult both tho cogficiont of variability and tre percentage incraase rige, attaining thair maximus at gighty-four howr. Tha cosfficient of variability falis to its minimum at ninety hours while the percentage increase doos not reach its infaimum until ninsty=aiz houris. Eere again from thens data one would expoct that tie moult woul: occur probably at about ninety hours ryw there tran at ef ghtyofour houre.

Yagi (1926) bas also brought out ths fact that, at loast in tho silk worm, Bombrax mori, the growtio rate is not conatant throughout an ingtar. It geang that near the middle of ascl inster a reduction in rais ocura which is fellowed by an increess. When the waighis are plotted this reo cuats initio Smohaped curves for eacl instar.

The inatare in the honeybes are go akort in comparison to tha age in tervels between the different groupe that it is impossible to say fram these date itether or not the abeve holds true for the honaybaق.

COMPARISON OF GROMTE RATY OF WORKER AND OUEEN LARVAE

In graph VII are plottod the vaigits of worker and queen larvas from sero to elghty-four hours. It is seen from tris that the averaga :aigkite of guean and worker larvee at corresponding ages are practically iuentical for the firet fortyoig ght hours. At twelve hours the average waight of queen larvae is 0.287 mg . 㤨ily that of worker larvae $1 ; 0.29$ mg. At twano tymour hourn the correaponding figuras ars 0.59 mg . and 0.52 mg . respec= tively and at thirty-aix hours, 1.28 mg . and 1.39 mg . At forty-eight

$-25=$

hours the waights are 3.10 mg . and 3.03 mg .
Following this the worker larvea epoas to grow more rapidiy than the queen larvae so that at sixty hours the queen larvae are less than half as Iarge ag the worter larvae, the figuree being $4.69 \pm 0.16 \mathrm{mg}$. and $12.12 \pm$ 0.45 mg . respectively. At seventy-two hours the we1ghts are 11.60 : 0.55 mg. and $30.55 \pm 0.30 \mathrm{mg}$. At of ghty-four the guean lervae have nearly canght up with the worker larvas the woighte being 42.31 t 1.79 mg . and 47.79 む 1.88 mg . sespgctively. Aftsr this tho queen lapvas increase much more ramdily than the worker larvas and at the end of the growth period ere mora than tixice an hesvy as the worker larvae.

From the stendpoint of weight alone then it would be possible to use worker lssvae for grafting into queen cells until at laant forty-gight hours of age. It ia ponsible, of course, that for other reasong theae older larvae rould not make as good quesns as younger ones. AGE AT WEICE NAXIMUM SITE IS REACEED

The highest average welght for any age group of workar larvae is atm tainedin the 114 hour age group as is ghown in Tabla IV. Thera is marked decresse in the averags weifert at 120 hours as compared with that at 124 hours. However, some of the l动ger larvag in the age group 230 houra are larger than the meller ones in the ags group 124 fours. Since there is \in probable age difference of four hours and also a difference due to inilviduality it in difficult to stato just wion an indiviaul lava ate tains its maximum size.

Agguming that the age of an individual larva in the age group 114 may vary from 112 to 115 hourg and that that in the age group 130 bourg, from 123 to 122 hours, it folleve thet, according to these drite, tho mam jority of the larve attair their maximu growth before 120 houra. It in probsule that sowe larvae attain their full growth by 114 hours whle others do not resck this stage until sbout 122 hourn.

The lighest avarage noight for any age group of quasn larrae $12 \mathrm{at}-$ taingi in the liz hour age group. Since thers in a merkedincreane in Hes ght from 230 to 232 houra and a marked decrease fran $13: 3$ to 214 hours it sesme likely thet the ege at wrich tho meximum weight ig attainedis closa to las hours. Since there 1 s a probeble age ifference of ahout six hourcin the quean larves ond it ig probeble trat some of the larger larvae in the 120 kour age group have namily reached their maximum size mkile some of those in tre 132 hour ego heve passed it, it ceems probable that the age at which fuli growth is attoined $119 s$ between 123 and 232 haura.

In the case of drone Iarvas the average welghta at 168 and 180 hours are nearly identical while previous to this there had been a marked increage end following this there in a slight decrease. Since the possible sge dife ference is twelve hours, it seems likely thet tre ege at vilici: the maximmo weigit is atteined lies betwaen 164 hourg and 184 rours.

COMCLUSIONS

1. Tha growth rato of the worker larvas varian gratly during a Eiven ingtar baing greatiy rejuced just previous, during, and aftar a moult.
2. The grouth rate of forker and quaen larvae for the first fortyaight hours is naarly identicsi.
3. Tho maximum weight of morker lervae is attainel betwaen 11 : hours and 122 hours of age.
4. The maximum weight of quasn larvae is attainad batwean lej hours and lis boura of age.
5. Tho maximum weight of drone larvas is attianal botwasn lat hours and 184 hours of age.
6. The grovith period of the queen lesvae sppoars to be glightly longer than that of the vorker darva0.
7. Seaing of the cell is began before the larve has eitaineit its maximun aeight.
8. Part of the difference in waight of individual larvas moted is due to differsnca in ago.

SUMMARY

1. A total of 2064 workar lervas in twenty-five age groups at intervals cix hoirs was weig ghod.
2. A total of 1570 drone larvae in ninetaon age groups at intervala of twalve hours was wol ged.
3. A total of 495 queen larvee in thirteen age groupa at intervela of twelvo kours was waiglied.
4. Worker larvae of known age were obtained by allowing a ques to lay in fremes in an observation hive and merting the cells with lacquer. The frsmes wero ranoved at definite intervals so that larvae of the dem gired age were obtained.
5. Drone larvae vere obtained by placing a frane of cirone comb in the center of the brood chanber of a strong colony. Tin was removed at twielve-hour intervale and the cells contoining egga were marked vith 1acquer. Tte frme was removed after a definite interval so that larvae of certain agea ware obtained.
6. Jueen larvae of known ago for grafting were obtained by ellowing a queen to lay in a frame for about twentymone hours. The frame was then placed above an excluder and removed after most of the eggs rad hatched. The gmellest larvae ware selectoi for grafting.
7. The average weights for worker larvae were as follows: Just
 toura, 0.36 mg . twenty -four houra, 0.52 mg ; thirty houra, 1.01 mg ;
 $3.03 \pm 0.36 \mathrm{mg} \cdot ;$ fifty-four hours, $5.87 \pm 0.29 \mathrm{mg} \cdot$; sixty hours, $11.23 \pm$ $0.48 \mathrm{mg} \cdot ;$ sixty-aix bours, $28.30 \pm 0.33 \mathrm{mg} \cdot \mathrm{i}$ geventgmotwours, 20.56 t $0.40 \mathrm{mg} \cdot \mathrm{i}$ seventy-aight hours, $25.92 \pm 0.55 \mathrm{mg} \cdot \mathrm{i}$ eighty-four hours, $47.79 \pm$ $1.88 \mathrm{mg} \cdot \mathrm{i}$ ninety hours, $66.76 \pm 1.25 \mathrm{mg} \cdot \mathrm{i}$ ninety-six hours, $80.19 \pm 1.98 \mathrm{mg}$ 。 102 hours, $215.62 \pm 2.79 \mathrm{mg} \cdot \mathrm{i} 208$ hours, $138.90 \pm 0.79 \mathrm{mg} \cdot \mathrm{f} 114$ hours, $159.06 \pm 0.36 \mathrm{mg} \cdot \mathrm{i} 120$ hours, $153.38 \pm 0.42 \mathrm{mg} \cdot 126$ hourg, 245.57 ± 0.62 mg.i 132 hours, $243.03 \pm 0.65 \mathrm{mg} \cdot \mathrm{i} 138$ hours, $141.83 \pm 0.50 \mathrm{mg} \cdot \mathrm{i} 144$ hours, $143.94 \pm 0.51 \mathrm{mg}$.
8. The average waights for drone larvas ware ag follows: Just hatchod, $0.112 \mathrm{mg} \cdot \mathrm{i}$ twelvo kourg, $0.25 \mathrm{mg} \cdot \mathrm{i} 4 \mathrm{hours}, 0.39 \mathrm{mg} \cdot \mathrm{i}$ thintyo six houra, $1.08 \mathrm{mg} \cdot \mathrm{i}$ fortymeight l:ours, 2.01 mg ; gixty hours, 3.24 ± 0.12 mg.i seventyotwo hours, 9.34 t $0.41 \mathrm{mg} \cdot \mathrm{f}$ eightyofour hourg, 28.03 \$ 0.73 $\mathrm{mg} \cdot \mathrm{i}$ ninety hours, $43.85 \pm 1.59 \mathrm{mg} ;$.208 houra, $77.04 \pm 2.68 \mathrm{mg} \cdot \mathrm{m} 120$ hourg, $215.30 \pm 4.90 \mathrm{mg} \cdot \mathrm{i} 132$ hours $159.88 \pm 4.66 \mathrm{mg} \cdot \mathrm{i} 144$ houra, $240.67 \pm$ 5.67 mg ; 156 hours, $347.26 \pm 5.38 \mathrm{mg} ; 168$ hours, 381.83 t $2.60 \mathrm{mg} ; 180$ hours, 387.22 t $1.96 \mathrm{mg} \cdot ; 292$ hours, 380.10 t $1.88 \mathrm{mg} ; 204$ hours, 361.39 t $1.92 \mathrm{mg} \cdot \mathrm{F} 216$ hours, $363.00 \pm 1.84 \mathrm{mg}$.
9. The average weights for gueen larvae wary ad follows: Juat hatched, 0.112 mg ; twelve hours, $0.787 \mathrm{mg} \cdot \mathrm{f}$ twonty-four hours, $0.59 \ddagger$ 0.026 mg ; thirty-mix hours, $2.38 \pm 0.028 \mathrm{mg} ;$ forty-91ght hours, 3.20 t $0.094 \mathrm{mg} \cdot ; \mathrm{sixty}$ houra, $4.69 \pm 0.16 \mathrm{mg} \cdot \mathrm{f}$ seyenty-two hours, 11.60 ± 0.55 mg.: eighty-four hourg, 42.31 ± 1.79 mge; ninety-six hours, 87.05 ± 2.01 mg.i 208 hours, $198.59 \neq 5.02 \mathrm{mg} \cdot \mathrm{i} 120$ hour $\mathrm{g}, 285.50$ 古 $5.81 \mathrm{mg} ; 232$ hourg,
$322.60 \neq 2.52 \mathrm{mg} \cdot \mathrm{m}^{2} 144$ hours, $302.89 \neq 1.68 \mathrm{mg}$.
10. The growth rate of morker larvas aghaured by the percentage inm croment method varies greatly during eacl: instar, being groatly retarded jugt before, during and after a moult.
11. The growth rate of worker and queen larvas for the first fortyeight hours ia approximataly the same.
12. Tha growth periods of the three kinds of larvae are epproximetely as followa: Worker larvas, 114 to 122 tours; drone larvae, 164 to 184 hoursi queen larvae, 132 to 132 kours.
13. Individual differences in mature worker larvae as measured by their coefficiente of variebility are relativaly amall.
14. Individual differences in youngar larvae in certain age groups are very large. At the time of moulting the differences are considerably reduced showing that part of the fomer differences are due to differences in age.

ACZMORLEGMENTS

The writer vishes to ixpress his appreciation for the assistance and helpful suggestions he raceived from Professor F. B. Paddock, Iowe State College, unier whose direction this work wes carried on, and for the assistance recaived from Doctor 0. R. Park, Apiculturallat, Iowa Expariment Station. He is also indebted to Doctor William E. Gates, Zoolog Dept. Louiaiana State Onversity, for asaistance in statistical calculations.

LITERATURE CITED

Alpatov, F. F. Biomatrical Studies in Variation and Recen of the Honsy1929 bes, Apis mollifgrs Linn. Guar. Rev. of Biol. 4:1-58.

Bertkolf, L. M. The Moulta of the Eoneybas Larvae.
1925 Jour. Ec. Ent. 18:380-384.

Chashire, Frank R. Boes and Beokesping. Scientific and Practical; 1886 Vol. $1:$ p. 20,50. L. J. Gill. London.

Nolson, James A. The Erebryology of the Nonoybee. p. 261. 1915 Princaton University Press, Princeton.

Nelson, James A. ani Sturtevent, Arnold P. 1924 Grouth and Faging of Loneybes Larvaa. D. S. D. A. Dept. Bull. 1:22, p. 21-23.

Straus, Dr. J. Von. Die chami sche Zumemenestzung der Arbeitabienan und 1911 Drohnen wätrend ihrer verschiedenen Entwicklungestadien. Ztechr. f. Biol. 56: 347-397.

Yagt, Nobumesa. Ansilysis of the growth Curves of the Insect Larvas. 1026 Kyoto Imn. Univ. Col. of Agr. Memoirs No. 1.

SCIENCE

SCIENCE

SCIENCE

table 1
YEIGHS OF EGGS.

TABILE I (Continued)

DATE	AGE IN HES.	HO. OR EGGS	$\begin{gathered} \text { Werany in } \\ \text { Ha, } \end{gathered}$	AVERAGE WETOHM
duge 10	72	10	122	0.12
\cdots	72	10	122	0.12
\cdots	72	25	3.0	0.12
\cdots	72	25	-300	0.12
\pm	12	25	-8a	0.12
Ange 21	72	25	800	0.12
n	72	21.	3.0	0.12
\cdots	78	25	3.0	0.12
\cdots	72	25	$\underline{2.8}$	0.126
n	72	25	3.0	0.12
\#	72	95	3.0	0.12
n	72	25	8.0	0.72
Aufe 30	72	β	0.5	0.10
n	32	5	-0.6	0.12
n	72	5	Qas	0.32
\cdots	12	5	0.6	0.12
n	12	5	0.6	0.32
n	32	5	0.5	0.10
	potals	350	39×3	0.119

-41-

TABLE II
HOBKAR LANAVAC 2928
(2) a

$$
-42=
$$

$$
-43
$$

TABLLE II (Contimad)

DATEAGE IN HOURS	$\begin{aligned} & \text { HOL OF } \\ & \text { IARIAK } \end{aligned}$	$\begin{gathered} \text { WEICHT IN } \\ \mathrm{Mb}_{6} \end{gathered}$	ATBRAGE WEIGHT	BEMARKS
Auge $10 \quad 48$	5	14.2.	2084	
n	5	15.6	3.12	
n	5	18.8	2.76	
n	5	14.2	2.84	
n	5	24.8	2.96	
n	6	15.4	3.08	
\cdots	5	14.8	2.96	
potals	55	158.8	$M=2089$	
Auge 10 - 60	6	36.7	7.34	
\pm	5.	K1.5	10.30	
\cdots	5	13.0	8.60	
\cdots	5	41.5	8.30	
n	6	35.6	17.12	
-	5	46.9	9.38	
"	5	48.6	9.92	
\square	5	49,5	2.90	
\#	5	44.0	8080	
\cdots	6	44.8	8086	
\ldots	5	48.7	8.74	-
\cdots	5	44.0	8.80	

PABLE II (Oontimed)

DATE	$\begin{aligned} & \triangle A E \text { II } \\ & \text { HOURS } \end{aligned}$	Fo. OF LIARYAE	WHIGHT III HRE	AVERAGE WEIGHT	RIMMAESS

| n | 96.6 | 19.32 |
| :--- | :--- | :--- | :--- |
| n | 98.0 | 19.20 |

H

\pm	5	84et	16.88
π	6	89.0	17.80
\square	5	88.4	17.68
1	5	OPet.	20.08

AxGe 8 - 78	E	121.8	25.56
n	6	215,6	25012
\pm	8	138.8	26.55
\pm	8	12720	25.40
-	5	134.8	26.96
n	5	11808	28.76
$\stackrel{ }{ }$	5	128.4	25.68

2ABTE II (Continued)				
	$\begin{gathered} \text { WEIGHT IN } \\ \text { MAC } \end{gathered}$	ATARAGE	Weiaut	REMARMS
Ange 8 28	12302	24.64		
$\underline{\square}$	121.0	24030		
n $\quad 6$	123.8	22.76		
-	101.0	20.80		
Totale 55	134402	24.44		
Avige_14 84 5	15202	30.44		
$\square 8$	165.6	38. 14		
n 5	19208	38,46		
\cdots	177.6	35.58		
0 - 5	180.8	86.04		
n 5	200.6	40.18		
\square	nuet	4208		
\cdots	1390	\%200		
$\square 5$	2090	41.80		
\% 6	286,	45024		
\cdots	178.6	35.59		
$\underline{\square}$	178.8.	36.64		
9 Ontala 6	29148	36.86		
ABfe $6 \quad 90 \quad 6$	3888	68.76		
$\square 8$	316.2	63.34		

$$
-40-
$$

TABHLS II (Contizaed)

$\begin{gathered} \text { DAGE IN } \\ \hline \text { HOURS } \\ \hline \end{gathered}$	NO. OF LARTAE	$\begin{gathered} \text { MIGHT IN } \\ \text { MGe } \end{gathered}$	AVERIGE WEIGHT	RESARKS
Auge 496	5	389,4	77.88	
"	5	403.0	80.60	
\square	5	389.4	77.88	
n	5	391.8	78.36	
1	5	414.6	82.92	
\#	5	359.6	71.92	
n	5	351.8	70.36	
n	5	389.6	77.92	
n	5	402.6	80.52	
Totals	65	4253.4	77.33	
Augie 14.120	5	773.4	154.7	All sealed
\pm	5	795.0	159.0	" \quad -
n	6	760.5	152.1	$\cdots \quad n$
1	5	770.2	154.0	$\cdots \quad m$
1	$\underline{5}$	737.8	14684	n
n	5	7398	1478	$n \quad n$
"	5	732.4	146.5	$n \quad n$
1	5	727.6	143.5	$n \quad n$
\cdots	5	730.4	146.1	\# \quad n
"	5	719.4	143.9	$n \quad n$

TABILEI III
WORKER LARVAE 1928
Quning B

$\begin{gathered} \text { DATE } \quad \begin{array}{c} \text { AGR IN } \\ \text { ROURS } \end{array} \\ \hline \end{gathered}$	NO. OF HdRNA	$\begin{gathered} \text { ViLaHT IN } \\ \text { Mg. } \\ \hline \end{gathered}$	AVARAG WDIGHT	RSIMARS
Auge 27 - 6	50	124	0.14	
1	10	1.2	0.12	
\#	10	126	0.16	
"	10	1.6	0.16	
\because	10	188	0.18	
Totaz	50	7.6	0.15	
Auge $18 \quad 12$	10	3.2	0.32	
"	10	3 c 2	0.32	
\cdots	10	4.3	0.43	
\square	10	3.5	0.35	

$$
-19-
$$

$$
-60=
$$

TABLE III (Continmed)

-52-

TABLEE III (Oontimed)

DEVATOPMNT OR NORKGR LARVAE

Age	namber of Inapas	Toight mge	average iloieht mis.	Remariss
6 hours.	10	2.8	0.18	
	10	1.7	0.17	
	10	200	0.20	
	10	3.5	0.25	
	10	1.7	0.17	
	tal 50	8.7	$=0.17$	
12 hours	10	3.3	0.33	
	10	2.6	0.26	
	10	2.5	0.25	
	10	3.0	0.30	
	20	2.9	0.29	
	tal 50	14.3	$=0.29$	
28 hours	10	3.7	0.37	
	10	3.9	0.39	
	30	3.6	0.36	
	10	3.3	0.33	
	10	3.5	0.35	
	10	3.6	0.36	
	tal 60	22.6	$=0.36$	

> TABLE IV (cone) -53

Age $\begin{array}{c}\text { Namber of } \\ \text { Liatrae }\end{array}$	Welght mg_{0}	ATOrage Moight mis.	Hemarks
24 hours 5	$2 \cdot 5$	0, 50	
5	3.0	0.60	
5	2.7	0.54	
5	2.6	0.02	
5	2.9	0.58	
5	205	0.50	
$\underline{6}$	2,3	0.46	
5	2.7	0.54	
5	23	0.46	
5	2.5	0.50	
Total 50	26.0	0.52	
30 houres_ 5	5.1	1.02	
5	5.9	1.18	
5	4.9	0.98	
5	6.6	1.32	
5	5.5	1.10	
5	4.0	0,80	
5	4.8	0.96	
5	5.0	2.00	
5	3.7	0.74	
Total 45	45.5	1.01 mmic	

Age	$\begin{aligned} & \text { Number of } \\ & \text { Laryag } \end{aligned}$	Weight mse	Average Jeluint rays	Remarks
36 houra	E	7.2	1.44	
	5	6.1.	1.22	
	5	5.2	1.04	
	5	7.3	1.46	
	5	6.5	1.30	
	5	6.6	1032	
	5	5.9	1.18	
	5	6.2	2.24	
	5	6.8	1.36	
	E	6.6	1.32	
	50	64.4	-1.29	
42 nours	5	8.9	208	
	5	7.6	3 E 5	
	5	9.2	2.8	
	5	8.5	1.7	
	6	8.6	12 l	
	5	8.7	27	
	5	78	3.6	
	5	$8 \cdot 1$	2.6	
	5	7.5	2.5	
	5	7.1	2.4	
	5	7.9	1.6	
	55	89.9	-1.63 ms.	\square

TABL: IV (Non.)

AgeNumber of	Woight inge	Average Volght mpis.	Remariks
-	6.3		
1.	5.5		
1	6.9		
1	6.6		
[1	5.8		
1	7.0		
1	6.4		
1-1	6.7		
1	803		
1	5.2		
1	3.7		
- 2	4.6		
2	5.6		
1	6.2		
1	4.9		
1	5.2		
1	488		
1	308		
5	15.4		
6	22.9		
2	7.0		
Total 32	63.8	4- 5.12	

> TABLE IV (Con.) -i.7-

TABLs's IV (Jon.)

Age Number of	Weight mg.	Average jeight inis.	Remarks
66 hours 2	29.2		
1	15.8		
$\underline{2}$	19.5		
1	18.7		
1	25.5		
1	16.1		
-1	17.4		
1	18.2		
1	16.6		
-	15.8		
1	16.6		
1	21.4		
$\underline{1}$	16.5		
1	23.6		
1	17.4		
1	20.5		
1	19.9		
1	28.9		
1	19.7		
1.	18.7		
5	66.9		
5	73.3		

\qquad	Veight 4	$\begin{aligned} & \text { Average Remarks } \\ & \text { Welyht me: } \end{aligned}$
5	74.2	
5	78.2	
5	67.8	
5	78.6	
motal 60	804.8	$\lambda=16.10 \mathrm{mgo}$
72 hours	19.5	
1	21.2	
1	24.8	
1	19.6	
L 1	17.8	
1	22,9	
1	19.1	
1	17.9	
1	23.6	
1	29.9	
$\underline{1}$	20.5	
1	21.2	
2	43.3	
4	68.4	
1	24.2	
1	20.5	
1	25.8	

> TABLect IV (COnc)
$-60=$

TABL: IV (0 On.)

\qquad	We1ght mse	Average joight mge	Remaris
d	19.3		
1	20.8		
1	23.8		
1	24.5		
1	30.5		
1	2602		
1	29.1		
d	88,8		
1	30.1		
1	34.2		
1	27.8		
1	22.3		
1	2181		
1	24.9		
1	21.2		
1	20.8		
1	9 9		
1	2463		
1	24,8		
$1 \quad \cdots$	23.3		
- 2	23.6		
20tal 34	881.3	$4=25.9$	-

> TABL: IV (vone)

Age Humber of Laxvas	$\begin{aligned} & 1701 \mathrm{ght} \\ & \text { mgh } \end{aligned}$	
1	67.6	
1	62.9	
2	65.0	
1	64.4	
1	74.1	
1	57.1	
1	58.3	
2	301.1	
Б	297.6	
5	118.3	
Totel 49	3234,3	H $4=66.00$
96 hours 2	63.7	
1	64.8	
1	63.5	
1	99.3	
1	92.4	
1	75.8	
1	67.6	
1	87.3	
1	92.1	
1	85.6	
1	70.1	
1	75.3	

AgeNumber of	的觔t mpe	Average Remarks Height miso	Remarks
1.	97.6		
1	85.0		
1	85.2		
1	84.3		
1	74.9		
5	399.9		
5	365,9		
5	428.5		
5	443.7		
5	420.4		
5	379.3		
Total 47	3790.9	H $y^{\text {a }} 80.66$ mpe	
102hours 1	94.5	Unses]	
1	112.1	\pm	
1	228.0	Segiln	Qgun
1	123.9	"	"
1	108.7	"	1
1	210.7	n	n
1	2206	n	"
1	113.8	"	\square
1	207.1	\cdots	n
1	209.4	"	n
-	118.8	"	n

AgeHumber of	Meight mis.	AVerage Moikht mese	Remarks
1	12888		\cdots
116.3			\cdots
1	119.6		n \quad n
$5 \quad 549.6$			
5 518.9			
$5 \quad 538.9$			
108 hours	141.1	141.2	Hearly geal ed
1		140.1	\cdots
1		137.5	$n \quad n$
1		142.4	
1		13502	\cdots
1		139,5	\cdots
1		137.6	$n n^{n}$
1		138.8	\cdots
5	669.3	134.9	$n \quad n$
5	695.6	139.2.	\cdots
5	687, 3	137.5	
5	692.2	138.2	\cdots
5	686.6	237,3	$n \quad n$
Totar 33	4541.2	137.61 mg.	

Age Humber of 	Deight mge	Average Romariss ilfolent mic
114 hours 1	155.4	Serlad
1	264.9	\%
1	165.6	n
1	163.9	\cdots
1	158.7	n
1	154.6	\dagger
1	159,0	1
1	153.7	n
1	162.6	n
1	168.3	\cdots
2	259.4	n
1	163.8	"
1	156,6	n
1	159,8	*
1	157.7	\dagger
1	756.2	\cdots
1	158.7	\cdots
1	264.3	n
1	157. 5	"
1	156.0	18
1	162.6	1
- 1	164.5	"
1	155.2	\cdots

```
TABLE IV (Con.)
                                    -60
```

Age	$\begin{aligned} & \text { Weight } \\ & \text { nge. } \end{aligned}$	Average Helight mis	Remarics	
1	156.6		Sanled	
1	157.6			
1	159.3		\#	
1	159,9		\cdots	
1	158.4		\cdots	
1	161.8		"	
1	157.3		"	
1	159.8		\#	
Total 31	$4930.7 \quad 4=159.06 \mathrm{~ms}$			
120 nourg 1	150.9		cogoons atarted	
1	153.0		\square	\cdots
1	158.2		n	"
1	265.5		"	\ldots
1	156.6		n	\cdots
1	152.5		\cdots	$\stackrel{\sim}{*}$
1	152.3		n	n
1	150.5		$\stackrel{\square}{4}$	"
1	154.2		n	n
1	150.8		n	"
1	156.0		n	n
1	150.0		n	"
1	219.6		"	"
-	150.5		"	n

TABLE IV (OOR.)
$-69-$

Age Number of	Weight mge. \qquad	Avorage Weisht mre	Remarks	
1	149.9		Cocoons started	
1	145.8		\cdots	"
1	150.5		\cdots	$"$
2	14208		"	n
1	150.9		\cdots	"
1	157.6		\cdots	"
1	149.7		"	n
2	154.3		\pm	\pm
1	153.9		\#	\#
1	153.0		n	n
1	253.9		"	n
1	152.6		\cdots	"
1	156.3		"	n
1	245.8		\pm	\cdots
1	152e2		1	n
1	153.2		"	"
1	155.3		"	n
1	154.8		\cdots	n
1	155.7		\cdots	-
Total 313	6028.7 浐 $=152.38 \mathrm{mgc}$			
126 houra 1	247.8	Suinning		
1	146.5	0		

Age	Nurbe er of Laryse	Weight mge	avarage Molght mise	Remarks
	1	14128		Snimning
	1	13802		\cdots
	1	159.3		\#
	1	141.6		n
	1	147.2		\cdots
	1	253.6		n
	1	154.2		\because
	1	145.5		n
	1	150.8		1
	1	14204		n
	1	147,2		\cdots
	1	135.3		n
	1	137.3		1
	1	148.8		\because
	1	144. 2		\pm
	1	145.5		\cdots
	1	147.6		\cdots
	1	144.3		4
	1	147.1		n
	1	14588		"
	1	148.3		\#
	1	144.6		"

TABLE IV (OOM.)

> TABLE IV (Con.)
-7\%

Age	Neight mge	AVerage Heignt ins.	Remarks
1	147.3		
1	14.3 .2		
1	144.5		
1	240.6		
1	142.4		
1	144.5		
1	139.6		
1	141.8		
2	241.3		
1	245. 5		
1	140.2		
1	143.8		
1	141.5		
1.	142.9		
T0tal 28	4030.3	i- 243094	
138 nours 1	236.8		
1	1424		
1	137.8		
1	142,3		
1	138.5		
1	142.9		
1	142.1		
$\xrightarrow{1}$	137.8		

TABL: IV (won.) -7.3-

Ago2rumber of	$\begin{gathered} \text { ialght } \\ \hline \end{gathered}$	Avarage \qquad	Rumariks	
1 146.2				
1 150.1.				
1 245.9				
1 147.0				
1 137.8				
139.9				
1 138.8				
1 145.6				
$1 \longrightarrow 143.3$				
1 145.9				
1 137.5				
1 138.8				
1 138,3				
1 139.5				
1 145.3				
$1 \longrightarrow-143.5$				
1 144.3				
1 141.3				
1	136.3		\cdots	$"$
1	141.2		\cdots	\cdots
1	153.9		n	"

TABLe's IV (Non.)

$$
-71-
$$

Tabli IVa
HORKBR LARVAE 1929

$\begin{aligned} & \text { AGE } \\ & \text { HRS } \end{aligned}$	$\begin{aligned} & \text { No. OR } \\ & \text { LARVAR } \end{aligned}$		THAN	INC. OVAR PRW, Matar	\% INO. OV:3R pante we gat	$\begin{aligned} & \text { OODF. OF } \\ & \text { YAR. } \end{aligned}$
6	50	8.7	0.17	0.06	54	
12	60	14.3	0.29	0.12	72	
18	60	21.6	0.35	0.07	24	
24	50	26.0	0.52	0.16	44	
30	45	45.5	1.07	0.49	94	
36	50	64.4	1.29	Q. 28	27	
42	55	89.9	1.63	0.34	26	

1 donotge 103s.

TABLA 7
-77-
DRONE LARVAE

Age Number of Laryae	Weight mge	Average Veient meso	Remariks
22 hours 10	3.0	0.30	8/5/29
10	2.0	0.20	
10	1.7	0.17	
10	2.5	0.25	
10	2.1	0.21	
10	202	0.22	
10	2.8	0.28	
10	3.3	0.33	
10	2.5	0.25	
-10	2.9	0.29	
A0tal 100	25.0	$=0.25 \mathrm{mg} 0$	
24 houra 20	3.4	0.34	8/5/29
10	3.7	0.37	
10	4.6	0.46	
10	4.2	0.42	
10	3.6	0.36	
10	3.8	0.38	
Potal 60	23.3	0.39 mg.	
36 nourg 5	5.6	2.12	8/5/29
5	7.2	1.42	
5	6.0	1.20	

${ }^{\text {Ag }}$ ¢	Cable V (Con.)		$-7.3-$ Remarks
	Foight mge.	Avarage iveright mpe	
5	Be5	1.70	8/5/29
5	4.2	0.84	
5	4.3	0.86	
5	3.0	1.00	
5	5 S 3	2.06	
5	5.2	1.04	
5	4.0	0.80	
5	5.5	1.10	
5	5.0	1.00	
5	5.4	1.08	
5	4.5	0.90	
6	$5_{8} 0$	1.02	
5	5.5	1.10	
Total 80	86.2	2.08 mmg	
48 hours 5	9.9	1.98	8/5/29
5	9.5	1.90	
$\underline{5}$	9.0	1680	
5	9.4	1.86	
5	9.7	1.94	
5	21.3	2.26	
5	18.5	2010	
5	10.3	2.06	

> TABLI V (0ono)
..\%-

$$
\text { TABLEE } V(\text { con. }) \quad-\quad 0-
$$

Age	Moight mge.	Average ifolicht inge	Reinarize
1 205			
1 307 3			
1 400			
1 3, 5			
1 3.1			
1 1-408			
1 20.9			
5 3.4			
$5 \ldots 304$			
5 19.9 400			
5 3.4			
5 16.4 3.3			
5 36.9 3.4			
5 37,5 3.5			
5 27.3 3.5			
5 5-15.9 3.9			
5 22.0 2.4			
5 36.0 302			
72 hourg 1 19,4 8/1/29			
1 214.6			
1 10.7			
1		7.8	

TABLES ∇ (con.)

- 31 -

Age	Number of Lanctas	foight inge \qquad	average iloight mes.	Remarka
	1		5.4	
	1		8.3	
	1		9.0	
	1		10.0	
	1		27.5	
	1		7.2	
	1		7.5	
	1		7.0	
	1		${ }^{\text {B }} 8$	
	1		8.5	
	1		7.7	
	1		8.2	
	2		7.8	
	1		5.5	
	1		8.7	
	1		10.3	
	5	39.2	7.8	
	5	47.0	9.4	
	5	37.2	7.4	
	5	45.2	9.0	
	5	39.0	7.8	
	5	40.6	8.2	
	5	35.8	7.2	

TABLE ∇ (Con.) $-8:-$

Age	$\begin{aligned} & \text { Number of } \\ & \text { Laritio } \end{aligned}$	Height mate	AVOrage Hoight mge.	Remerise
	5	95.9	29.2	
	5	101.0	$2 \mathrm{CO}_{2}$	
	5	99.7	19.9	
	5	94.9	19.0	
	5	101e	20.4	
	5	97.7	19,5	
	5	99.5	19.9	
		248.2	29.13 git	
96 hours	1		40.0	$861 / 29$
	1		37.2	
	1		39.0	
	1		56.9	
	λ		34.5	
	1		29.7	
	1		40.4	
	1		24.5	
	1		45.4	
	2		37.5	
	1		48.1	
	1		56.0	
	2		38,8	
	1		26.5	
	1		32.4	

WABLES $V($ ONO $) \quad-3 /$

AgeNumber of Lartae	Seight mge.	Average Weight mas	Bemarise
1 1-41.6			
1 39, 8			
1		49.2	
$1$$39.4$			
1 6-65.0			
1 62,5			
1 59,9			
1 - 43.3			
$8 \quad 279.5 \quad 43.9$			
$5 \quad 183.2$ 26.6			
5 205.4 41.1			
$5 \quad 18407$			
5 5-213.0 42.6			
$5 \quad 387.6$			
5	227.3	44.3	
$\underline{5}$	178.0	33.6	
Total $63 \quad 2578.6 \quad M=40.96$			
1 77.7			
104.0			
1 - 4807			
1		40.1	
		50.3	

Age	Number of Jaypas	Aalght suge	Average blaight mge.	Remarks
1 75.3				
1 203.5				
1 95.4				
$1 \ldots 8.8$				
1.83.6				
1.81 .4				
120507				
1 2 9				
1.79 .5				
$1 \ldots 92$				
1 75.1				
1 76.9				
1 76.0				
1 84,8				
1 75.3				
1 7704				
1 55.4				
1 43.9				
5 452.1 90.4				
5 980.9 960				
$5 \quad 45200.90 .4$				
	5	433.5	86.7	
	5	543.2	108.6	

TABLE ∇ (UON.)
-io-

$$
\text { TABLIS } \nabla \text { (COn.) - }
$$

Age	Veight mg.	Remarks
120 horrg	122.1	8/1/29
$\underline{1}$	145.3	
1	98.6	
1	234.4	
1	99,0	
1	223.3	
1	109.7	
1	900	
Total 8	922.4	
332 hours 2	128.6	8/1/29
1	175.2	
1	126.1	
1	130.0	
$\underline{1}$	209, 8	
1	1829	
1	120.9	
1	14208	
1	170.6	
1	184.9	
1	187. 4	
1	177.6	
$\underline{\square}$	220.0	

$$
-90
$$

TABL V (con.)

$$
\text { TABLE } \downarrow \text { (cone) }
$$

Age	Number of Iarpae	Weight uns	Average Height mre	Remarks
	4	1407. 5	351.9	
	5	1782.1	356.4	
	5	1916.5	383.3	
	2	763.0	381, 5	
	46	6413.6	356.86 mg	
156 hours	1		345.7	
	1		340,5	
	1		333.9	
	1		340.1	
	1		353.1	
	1		347.4	
	2		359,8	
	1		357.7	
	1		334.4	
	1		352.3	
	1		324e4	
	1		303.4	
	1		342. 8	
	1		357.7	
	1		330.5	
	1		349.1	
	1		324.5	

-920

TABLLA V (00n.)

age	Weight nfe \qquad	Average Mal, ht mio.	Remarks
1		341.2	
1		370.3	
1		339.4	
$\underline{1}$		340.7	
1		308.2	
1		325.0	
1		358.4	
1		354.2	!
5	1429.6	285.9	
5	1643.0	328.6	Partly sealed
5	1674.9	335.0	
5	1699.7	339.9	$\cdots \quad n$
5	1676.4	335.3	
5	1498.0	299.6	
5	1454.9	29.80	
5	1725.6	346.2	
5	1681.8	336.4	
5	1687.1	337.4	
5	14444.4	288.9	
5	1589,4	317.9	
5	1652.0	330.4	
5	1699.5	339.9	

$$
-93
$$

TABLE ∇ (Cone)

$$
-9+
$$

LABLAS Y (COn. $)$

TABLE ∇ (Gon.)

Table V (00n.)
Age Number of

$$
-39-
$$

Tablie V (Contimed)

$$
-100
$$

TABLE V (contimed)

-1u1-

-105-

TABLE Va
DROTH LARVAE 1929

IIA HIETH

TABHE VII (Contimed)

$$
\begin{gathered}
\sum x^{2}=0.1758 \\
\Sigma x(M)=0.1788 \\
\Sigma x^{2}-\sum x(y)=0.0014 \\
\sqrt{2 x^{2}-\Sigma x(M)}=0.0374 \\
\sigma=0.01 \mathrm{mg} \\
P_{0} E \varepsilon_{\bullet}=0.007 \mathrm{mg} \cdot \\
\text { P.E }_{\bullet}=0.003 \mathrm{mg}
\end{gathered}
$$

Eatimated σ of single laytae 0.01 mge $x \sqrt{5}=0.022$ mge
Eatimated Pok. of single larval 0.007 mgo Fx $\sqrt{5}=0.016$ mgo

TABLR VII

QURER LARTAE 1929

RABTE VIII (Oontinned)

$\begin{aligned} & 00 \mathrm{~K} \\ & 500 \end{aligned}$	$\begin{array}{ll} \text { AGR HO. OE } \\ \text { BRS, IARYAR } \end{array}$	$\begin{aligned} & \text { WEIOHT } \\ & \text { M IMe } \end{aligned}$	REMARKS	INO. OVER \% ITOC, OVER 	$\begin{aligned} & 00 \mathrm{BF}, 02 \\ & \mathrm{TAR} \end{aligned}$
0	31	0.3	Arces		
0	1	0.4			
1.	1.	On			
A	1	O.t			
1	1	0.9	Ange 15		
8	1	0.7			
3	1	0.6			
8	1	029			
3	1	$1+0$			
0	1	0.8			
0	1	On 8			
0	1	20			
0	1	Q08			
0	- 1	0.7			
0	1	0.7			
0	1	0.7			
B	1	O.4	Ause 2		
8	1	0.7			
8	1	10^{2}			
8	1	0.7			
n	1	0.4			
0	1	0.6			
0	1	2 n 3			

-111-
TABLES VIII (contimed)

0	0,8	
0	1	0.7

120.2	
1	0.5
D	Qe5.
12	0.5

0 O 1 O
0 O 1

58.2 On Ange 3	
8	18
1	1.8
3	1.0
31	1.9
1-1	4.9 arices
H	123

2AHIA: VIII (Ocmtimed)

$$
-113
$$

TABLE VIII (Continmed)

A
A
A
2
I
D

-	1 1-2

PABLIE VIII (Contimed)

TABLE VIII (Contimad)

caite VIII (Contimmed)						
$\begin{aligned} & \text { COL } \\ & \text { WOM } \end{aligned}$	$\begin{aligned} & \text { AGE HO. OF } \\ & \text { ERRS IARYAR } \end{aligned}$	$\begin{aligned} & \text { FIE IHT } \\ & \text { IHE } \end{aligned}$	RGMARTS	IEO.OVER PRETE REMS	\$ 1200 . OVA pgeverghe	COEPRIO 12 OT HARe
0 2 48 2.7 Auge 15						
0 2-20						
0 - 4.1						
0 1 4						
0 O_S 1						
0 1 2.9						
0 1 1 2at						
B 1 \%						
B 1 Imal						
$B \quad 1 \quad 400$						
B 1 1 806						
8 1 3 - 18						
B B^{2}						
8 B ${ }^{1}$						
B						
3 B 304						
D	1	2.6	Auge 2			

PABCH VEII (Oontimaed)

1

PAThic VIII (Contimul)	
A 1 E. ${ }^{\text {a }}$	
4 A 4	
A 1 A 1	
A 1 6.8	
+ 1 E.3	
A 1 A 6	
A ${ }^{1}$	
A 1 E.5	
A 1 7.2 Atren	
A 6.8	
A 2 6eb	
D 1 S.4	
D 6-1	
A 78 2 92, mun 28	
4 1-1392	
A 13.2	
A 2	

2athes VIII (Oontimed)

DABIE VIII (Contimed)

084	30,6 Ause 3
$0 \quad 1$	42.9
$0 \quad 1$	35.6
0 O	3182
0 1 1	38.7
A 1	62.9 Augem
1	6588
A	42.1
1	50,4
A	78.2
A 1	45.2
A 2	40.0
A 1	47% Just Mour tod

TAGLLE VILI (Contimed)

2ABLI VHI (Oontimed)

WARFE VIII (Oontizmed)

TABTE VIII (Oontimed)

-1.25

TAETW VIII (COntimued)

SABE TIII (OOntimed)

D
D

D	292.	\pm
1	3183	-

D

TABUE VIII (Contimped)

2ABLE VIII (Continued)

$\begin{aligned} & \text { COL. AGE HO. OR } \\ & \text { HO HRS THABAR } \end{aligned}$	WEIGHT \qquad	INO. OVER PRETCHETGH	\% INC. OVER PRAREGETHS	$\begin{aligned} & \text { COER• OR } \\ & \text { YAR. } \end{aligned}$
1 14. 1	386.3			
B 1	32at	P92		
B 1	neas			
B	300.3			
B	87.50			
1	7.1.6			
B 1	82704			
B	81988			
8	878.4			
B 1	2840			
B 2	36.1			
B 1	31.8			
B	P98a			
1-1	3778			
R 1	912.			
B	28702			
0	P967			
0	308.2			
$0 \ldots 1$	294			
$0 \quad 1$	20398			

$$
-1 \geqslant 3-
$$

TABLIE VIII (continued)

