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Honey bees are significant pollinators of agricultural crops and

other important plant species. High annual losses of honey bee

colonies in North America and in some parts of Europe have

profound ecological and economic implications. Colony losses

have been attributed to multiple factors including RNA viruses,

thus understanding bee antiviral defense mechanisms may

result in the development of strategies that mitigate colony

losses. Honey bee antiviral defense mechanisms include RNA-

interference, pathogen-associated molecular pattern (PAMP)

triggered signal transduction cascades, and reactive oxygen

species generation. However, the relative importance of these

and other pathways is largely uncharacterized. Herein we review

the current understanding of honey bee antiviral defense

mechanisms and suggest important avenues for future

investigation.
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Introduction
Honey bees (Apis mellifera) are fascinating insects that

play a critical role in agriculture as pollinators of crops

(U.S. value over $15 billion/year) and plant species that

enhance the biodiversity of both agricultural and non-

agricultural landscapes [1]. Since 2006, honey bee popu-

lations in the U.S., Canada, and in some parts of Europe

have experienced high annual losses [2,3,4��]. An average

of 33% of U.S. honey bee colonies die each year, and a

fraction of these losses are attributed to Colony Collapse

Disorder (CCD) [5,6�,7,8,9��]. Multiple biotic and abiotic

factors contribute to colony health and survival (i.e.,

viruses, mites, microbes, bee genetics, weather, forage

quality and availability, management practices, and agro-
www.sciencedirect.com 
chemical exposure) [9��,10,11��,12��]. Understanding the

most influential factors and potential synergistic effects

on honey bee health is critical to developing pollinator

management and conservation strategies that limit bee

colony losses [13].

Several epidemiologic and temporal monitoring studies

indicate the important role of pathogens in colony loss

including viruses, bacteria, fungi, trypanosomatids, and

mites [4��,9��,12��,14�,15,16�,17,18��,19��,20,21]. The

majority of honey bee infecting pathogens are RNA

viruses, including Acute bee paralysis virus [22], Black

queen cell virus [23], Israeli acute bee paralysis virus [24],

Kashmir bee virus [25], Deformed wing virus [26],

Kakugo virus [27], Varroa destructor virus-1 [28], Sac-

brood virus [29], Slow bee paralysis virus [30], Cloudy

wing virus [31], Big Sioux River virus [17,20], Aphid lethal

virus (strain Brookings) [17,20], Chronic bee paralysis

virus [32] (reviewed in [33,34]) and the Lake Sinai viruses

(LSV1 and LSV2 [20], LSV3 [12��], LSV4 [17], and LSV5

[35]. Honey bee virus infections may cause deformities,

paralysis, death, or remain asymptomatic [33]. Bee viruses

are transmitted via vertical and horizontal routes [36],

including co-foraging with wild and managed bee popu-

lations [37–39]. The ectoparasitic mite Varroa destructor
serves as a vector for several honey bee viruses [40–42]

and causes colony loss by feeding on bee hemolymph and

killing bee brood [43]. Several studies indicate that com-

binatorial effects of mites and viruses result in colony loss

(reviewed in [34,44��,45��,46]). The relationship between

colony health and pathogen prevalence and abundance is

complex and dependent upon season, geographic loca-

tion, pathogen strain, and both individual and colony

level bee immune responses. Thus, temporal monitoring

studies are key to understanding the relative impact of

these variables on honey bee colony health.

The focus of this review is to summarize our current

understanding of honey bee antiviral responses. Honey

bees, like all other organisms, have evolved mechanisms

to detect and limit virus infection. Knowledge of honey

bee immune mechanisms is largely derived via compari-

son to the better-characterized immune responses in

fruit-flies and mosquitoes. While comparative genomics

is a useful approach for evaluating honey bee immune

gene function, it is important to note that Western

honey bees (Apis mellifera) are eusocial Hymenopteran

insects, an order that diverged from the solitary Dipteran

insects including fruit-flies and mosquitos approximately

300 million years ago [47,48��,49,50]. General aspects of
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Honey bee immune pathways — highlighting genes implicated in antiviral immune responses. The honey bee genome encodes major members of

insect immune pathways including: RNAi (RNA interference); Jak/STAT (Janus kinase/Signal Transducer and Activator of Transcription); Toll; NF-

kB (Nuclear Factor kB); JNK (c-Jun N-terminal kinase); and MAPK (Mitogen-Activated Protein Kinases), as well as orthologs of genes involved in

autophagy, eicosanoid biosynthesis, endocytosis, and melanization. Bold text indicates genes and proteins differentially expressed in virus-

infected honey bees. Additional information including Apis mellifera (Am) gene accession numbers is provided in Tables 1 and S1. The first step in

immune activation is host recognition of pathogen associated molecular patterns (PAMPs) including viral dsRNA, bacterial peptidoglycans, and

fungal b-glucans. In general, the Toll pathway is involved in defense against Gram(+) bacteria and fungi and the Imd pathway is activated by

Gram(�) bacteria, but specific host–pathogen interactions are unique. This is particularly true for host–virus interactions since data from fruit-flies,

mosquitoes, and honey bees indicate differential activation of immune genes and pathways. The Jak/STAT pathway is activated via ligand

binding to the Domeless receptor; while Drosophila melanogaster (Dm) express Domeless ligands (unpaired, upd, upd2, and upd3), a honey bee

upd ortholog has not been identified. Following Domeless-ligand binding, Hopscotch Janus kinases are transphosphorylated, leading to

phosphorylation and dimerization of STAT92E-like proteins. Activated STATs transcriptionally regulate antimicrobial effectors TEP7 (Thioester-

containing protein 7), TEPA, TEPB, and the Jak/STAT inhibitor SOCS (Suppressor of Cytokine Signaling). The honey bee genome also encodes for

D-PIAS (Protein Inhibitor of Activated STAT), another inhibitor of the Jak/STAT pathway. The RNAi-pathway is initiated by Dm Dicer-2 cleavage of

viral dsRNA into 21–22 bp siRNAs; Am Dicer-like share �30% aa identity with Dm Dicer-2. The siRNAs are then loaded into AGO2 (Argonaute-2),

the catalytic component of the RISC (RNA Induced Silencing Complex). A single strand of the siRNA is retained in the RISC and used to

specifically target cognate viral genome sequences for cleavage. In addition, Dm Dicer-2 serves as a dsRNA sensor that mediates a signal

transduction cascade resulting in increased expression of Dm Vago and suppression of viral replication. Am Dicer-like may serve as a dsRNA

sensor, and honey bees have a vago ortholog (Table S1), but the mechanism(s) of honey bee non-specific dsRNA-mediated antiviral responses

require additional characterization. The Toll pathway is activated by a family of pathogen recognition receptors (PRRs) (e.g., peptidoglycan

receptor proteins and Gram(�) binding proteins) that bind fungal and bacterial PAMPs. The Toll pathway is activated in some insect host–virus

combinations, although the activation mechanism is unknown. Following PAMP binding, a serine protease cascade results in cleavage of pro-

Spaetzle into mature Spaetzle. The honey bee genome encodes two putative spaetzle orthologs, which bind the membrane-anchored Toll

receptor. Toll dimerization results in the recruitment of dMyD88, Tube, and Pelle. Pelle is likely involved in degradation of NF-kB inhibitors (e.g.,

Cactus-1, Cactus-2, Cactus-3), resulting in the release of transcription factors Dorsal-1A and Dorsal-1B. Nuclear translocation of Dorsal results in

increased expression of antimicrobial peptides (AMPs). The Imd pathway is activated by Peptidoglycan recognition protein LC (PGRP-LC) binding

to diaminopimelic-containing peptidoglycan of Gram(�) bacteria, followed by activation of the adaptor protein Immune deficiency (IMD), Relish

phosphorylation by the IKK complex (IkB kinase), and cleavage of Relish by the caspase Dredd (Death-related ced-3/Nedd2-like). Relish

transcriptionally regulates expression of AMPs and other genes involved in antimicrobial defense. The JNK pathway is also activated by TAB

(Transforming growth factor-activated kinase 1) and TAK1 (Transforming growth factor-activated kinase 1 binding protein), resulting in AMP

Current Opinion in Insect Science 2015, 10:71–82 www.sciencedirect.com
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immunity, including detection of pathogen associated

molecular patterns (PAMPs) and production of effector

molecules are conserved in mammals, plants, and insects,

and both plants and insects employ RNA interference

(RNAi) as a major mechanism of antiviral defense

[51,52��,53�]. These immune pathways provide a frame-

work for understanding honey bee host–virus interactions.

Insect immune pathways
RNA interference (RNAi) is the major mechanism of

antiviral defense in fruit-flies and mosquitos (reviewed

in [53�,54,55,56,57�,58]). RNAi is a sequence specific,

post-transcriptional gene and virus silencing mechanism

that is triggered by double-stranded RNA (dsRNA). Direct

evidence of the antiviral role of RNAi in insects has

predominantly come from studies in Drosophila melanoga-
ster, Aedes aegypti, and Anopheles gambiae, which involved

experimental infections via injections with pure virus

inocula, mutant-flies, or gene knock-down in mosquitos

[59–63]. Likewise, field and laboratory based studies in

Apis mellifera (Western honey bee) [64�,65��,66��,67,

68,69��] and Apis cerana (Eastern honey bee) [70] indicate

that RNAi-mediated antiviral immunity is important in

honey bees (reviewed in [71��]). In addition, dsRNA may

serve as a non-sequence-specific virus associated molecular

pattern (VAMP) that triggers innate antiviral immune

pathways in fruit-flies [72] and honey bees [73�,74], similar

to the mammalian interferon response [75] (Figure 1,

Tables 1 and S1).

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.cois.2015.

04.016.

Other insect immune responses include melanization,

encapsulation, reactive oxygen species production, and

activation of signal transduction cascades that result in the

production of antimicrobial peptides (AMPs) and other

effector proteins (Figure 1, Tables 1 and S1). These

pathways include the Toll, Imd (Immune Deficiency)

and Jak/STAT (Janus kinase and Signal Transducer and

Activator of Transcription) innate immune response path-

ways (Figure 1) (reviewed in [52��,56,76��,77,78,79��,80]).

There are numerous orthologous proteins utilized in

plant, insect, and mammalian immune defense mecha-

nisms (reviewed in [51,81]), and discovery of the Dro-
sophila Toll pathway led to the identification of a

repertoire of mammalian Toll-like receptors (TLRs)
(Figure 1 legend continued) expression and/or apoptosis. In Drosophila, b

autophagy, likely by inhibiting the PI3/Akt/Tor (phosphatidylinositol 3-kinase

autophagy. The honey bee genome encodes for one gene of the Toll-7/2 cl

Toll-7 and �45% aa identity with Dm Toll-2. The role of Am18w protein in a

Eicosanoid biosynthesis begins with the induction of PLA2 (Phospholipase

PAMP recognition. Activated PLA2 hydrolyzes arachidonic acid (AA) from c

of AA by an unidentified enzyme. Eicosanoids are critical for nodulation and

prophenoloxidase (PPO) from hemocytes. Experimental evidence also sugg

honey bee antiviral defense.
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(reviewed in [81,82]). The importance of the Toll,

Imd, Jak/STAT, and other pathways in antiviral defense

is variable and specific to individual virus–host interac-

tions [76��,80,83]. For example, the Toll pathway is

involved in D. melanogaster and Aedes aegypti defense

against Drosophila X virus [84] and Dengue [85], respec-

tively, as dif loss of function mutants were more suscep-

tible to virus infection. The Drosophila Imd pathway plays

a larger role than the Toll pathway in limiting Sindbis

virus [86] and Cricket paralysis virus (CrPV) [87], and the

Jak-Stat pathway is critical to combating Drosophila C

virus infection [88]. AMPs are small cationic peptides that

penetrate microbial membranes, serve in innate immune

signaling, and play additional uncharacterized functions

(reviewed in [77,89]). While the role of AMPs in virus

infection is not known, changes in AMP expression are

used as indicators of immune pathway regulation. AMP

induction in D. melanogaster varies, as some viruses induce

expression (i.e., DXV and SINV) and others do not (i.e.,

CrPV and Rhabidovirus [90]). Numerous studies suggest

the role of additional pathways in insect antiviral defense

[72,80,88,90–92].

Honey bee antiviral immune responses
Bioinformatic analysis of the honey bee genome identi-

fied A. mellifera orthologs of insect immune genes and

suggests that bees have fewer immune genes than D.
melanogaster, Ae. aegypti, or An. gambiae [47,48��,93]. The

honey bee genome encodes the suite of genes required

for RNAi including dicer-1, ago-2, r2d2, and dicer-like,
which shares 30% nucleotide identity with Dm dicer-2
[47,94]. All the main components of the Toll, Imd, JNK,

Tor, and Jak-STAT pathways have been identified (ex-

cept upd), as well as immune effector proteins including

AMPs (i.e., abaecin, hymenoptaecin, apidaecin, and defensin)

and prophenoloxidases [48��]. RNAi, Toll, Imd, endocy-

tosis, MAPK, and non-specific dsRNA-mediated immune

pathways have been implicated in honey bee antiviral

defense (Figure 1, Tables 1 and S1).

A distinguishing feature of virus infection is the presence

of long, double-stranded RNA molecules in the cytosol of

the infected cell. Since long dsRNAs are not typical

products of eukaryotic gene expression, these molecules

are recognized as PAMPs in hosts including plants,

arthropods, insects, and mammals [95]. Mammals have

several receptors (e.g., TLR3, PKR, RIG-I, and MDA-5)

that upon binding dsRNA, activate signal transduction
inding of vesicular stomatitis virus to the Toll-7 receptor promotes

/Protein kinase B/Target of rapamycin) pathway which suppresses

ade, 18-wheeler (am18w), which shares �49% aa identity with Dm

ntiviral defense and autophagy in honey bees is unknown. In insects,

 2) from signal cascades downstream of viral, fungal, or bacterial

ellular phospholipids. Eicosonoid production likely occurs via oxidation

 aid in phagocytosis, micro-aggregation, adhesion, and release of

ests endocytosis, melanization, and MAPK pathways are involved in
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Table 1

Honey bee immune genes. The Apis mellifera genome encodes major members of insect immune pathways including those depicted in

Figure 1 and listed by gene name, pathway, and accession number in this table. Bold text indicates genes differentially expressed in virus-

infected honey bees, and the specific virus and citation are provided for each. Transcript variants, the majority of which were predicted

using Gnomon and the NCBI RefSeq Database, are listed although many have not been experimentally verified as expressed transcripts,

nor been specifically implicated in antiviral defense. A list of additional honey bee immune related genes is provided in Supporting

Table S1.

Gene name Pathway Accession number Virus Reference

abaecin AMP NM_001011617.1 SINV Flenniken and Andino [73�]

apidaecin 1 (apid 1) AMP NM_001011613.1 SINV, DWV Flenniken and Andino [73�],

Kuster et al. [44��]

apidaecin 1 (apid73) AMP XM_006572699.1 SINV, DWV Flenniken and Andino [73�],

Kuster et al. [44��]

apidaecin type 22 (apid22) AMP NM_001011642.1 SINV, DWV Flenniken and Andino [73�],

Kuster et al. [44��]

hymenoptaecin AMP NM_001011615.1 SINV, DWV Flenniken and Andino [73�],

Kuster et al. [44��]

defensin-2 AMP NM_001011638.1 DWV Kuster et al. [44��]

apisimin AMP NM_001011582.1

defensin-1 AMP NM_001011616.2

vago antivir XM_395092.4 DWV Ryabov et al. [69��]

nimrod c1 (nimc1) EGF Family XM_006561053.1 SINV Flenniken and Andino [73�]

phospholipase a2 (pla2) Eicosanoid NM_001011614.1

unc-80/endocytosis Endocytosis XM_006558847.1 SINV Flenniken and Andino [73�]

dscam IG superfamily * SINV Flenniken and Andino [73�]

relish (rel), var x1 IMD XM_006562219.1 DWV Kuster et al. [44��]

relish (rel), var x2 IMD XM_006562220.1 DWV Kuster et al. [44��]

relish (rel), var x3 IMD XM_006562221.1 DWV Kuster et al. [44��]

fadd IMD GB30399

imd IMD NM_001163717.1

ikkg-kenny IMD XM_001120619.3

ird5 IMD XM_623132.3

pgrp-lc IMD XM_392452.5

dredd IMD XM_001120830.1

tab, var x1 IMD XM_001122664.3

tab, var x2 IMD XM_006565777.1

tak1, var x1 IMD XM_006572294.1

tak1,var x2 IMD XM_397248.5

d-pias, var x1 Jak/STAT XM_006561055.1 IAPV Chen et al. [18��]

d-pias, var x2 Jak/STAT XM_006561056.1 IAPV Chen et al. [18��]

d-pias, var x3 Jak/STAT XM_623568.4 IAPV Chen et al. [18��]

hopscotch (hop), var x1 Jak/STAT XM_001121783.3 IAPV Chen et al. [18��]

hopscotch (hop), var x2 Jak/STAT XM_006567688.1 IAPV Chen et al. [18��]

hopscotch (hop), var x3 Jak/STAT XM_006567689.1 IAPV Chen et al. [18��]

hopscotch (hop), var x4 Jak/STAT XM_006567690.1 IAPV Chen et al. [18��]

stat92e-like Jak/STAT XM_397181.5 IAPV Chen et al. [18��]

domeless Jak/STAT XM_003251652.2

socs-5, var x1 Jak/STAT XM_006570603.1

socs-5, var x2 Jak/STAT XM_624416.4

tepb Jak/STAT XM_006570965.1

tep7, var x1 Jak/STAT XM_006565440.1

tep7, var x2 Jak/STAT XM_006565441.1

tepa, var x1 Jak/STAT XM_006571765.1

tepa, var x2 Jak/STAT XM_397416.4

lysozyme 1 (lys) Lysozyme NC_007082.3

lysozyme 2 (lys-2) Lysozyme NM_001120136.3

lysozyme 3 (lys-3), var x1 Lysozyme XM_393161.5

lysozyme 3 (lys-3), var x2 Lysozyme XM_006571783.1

nimrod b (nimb) Phagocytosis GB12454

nimrod a (nima) Phagocytosis XM_001120328.3

nimrod c2 (nimc2), var x1 Phagocytosis XM_006561040.1

nimrod c2 (nimc2), var x2 Phagocytosis XM_006561041.1

nimrod c2 (nimc2), var x3 Phagocytosis XM_006561042.1

nimrod c2 (nimc2), var x4 Phagocytosis XM_006561043.1

pi3k, var x1 PI3K-Akt-Tor XM_006570469.1

pi3k, var x2 PI3K-Akt-Tor XM_623894.3

target of rapamycin (tor) PI3K-Akt-Tor XM_006566642.1

Current Opinion in Insect Science 2015, 10:71–82 www.sciencedirect.com
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Table 1 (Continued )

Gene name Pathway Accession number Virus Reference

akt-interacting protein-like PI3K-Akt-Tor XM_625206.4

raptor PI3K-Akt-Tor XM_624057.4 IAPV Chen et al. [18��]

phenoloxidase subunit a3 (ppo) PPO NM_001011627.1

argonaute 2 (ago2) RNAi XM_395048.5 DWV Galbraith et al. [101��]

dicer-like RNAi XM_006571316.1 DWV Galbraith et al. [101��]

lysyl oxidase-like 2 (lox2), var x1 Scav. Receptor A XM_006560641.1

lysyl oxidase-like 2 (lox2), var x2 Scav. Receptor A XM_392090.4

nf-k-b inhibitor cactus 1 Toll/TLR NM_001163712.1 DWV Galbraith et al. [101��]

toll-6 Toll/TLR XM_393712.4 DWV Galbraith et al. [101��]

dorsal, var a Toll/TLR NM_001011577.1 DWV Nazzi et al. [102��]

dorsal, var b Toll/TLR NM_001171006.1

dorsal-2 (dl-2), var x1 Toll/TLR XM_006565455.1

dorsal-2 (dl-2), var x2 Toll/TLR XM_395180.5

ikappab kinase-like 2 (ik2) Toll/TLR XM_396937.5

myd88, var x1 Toll/TLR NM_006560439.1

myd88, var x2 Toll/TLR XM_006560440.1

nf-kappa-b inhibitor cact1, var x1 Toll/TLR XM_006567107.1

nf-kappa-b inhibitor cact1, var x2 Toll/TLR XM_006567108.1

nf-kappa-b inhibitor cact2 Toll/TLR XM_394485.5

nf-kappa-b inhibitor cact3, var 2 Toll/TLR XM_625153.4

spaetzle-like, var x1 Toll/TLR XM_003250921.2

spaetzle-like, var x2 Toll/TLR XM_006566961.1

pelle, var x1 Toll/TLR XM_006565164.1

pelle, var x2 Toll/TLR XM_623999.4

traf6, var x1 Toll/TLR XM_006562507.1

traf6, var x2 Toll/TLR XM_624204.4

toll interacting protein (tollip) Toll/TLR XM_624414.4

toll-1 Toll/TLR XM_006562720.1

toll-10 Toll/TLR XM_006562853.1

toll-8 Toll/TLR XM_393713.3

tube protein (tub) Toll/TLR XM_001121229.3

18-wheeler (18-w)/toll like receptor Toll/TLR NM_001013361.1

* Note dscam has 104 transcript variants: NM_001014991.1; XM_006567003.1–XM_006567105.1.
cascades, resulting in the transcriptional activation of

genes involved in generating an ‘antiviral state’ including

thousands of interferon stimulated genes (reviewed in

[96,97]). Importantly, long dsRNAs also serve as the

substrate for RNAi-mediated antiviral responses. The

first step of the antiviral small interfering RNA (siRNA)

pathway is cleavage of cytosolic dsRNA by the Dicer

enzyme (Figure 1). Initial studies implicating the role of

RNAi in honey bee antiviral defense demonstrated that

feeding sucrose solutions containing IAPV-specific

dsRNA resulted in increased bee survival, lower levels

of IAPV [64�], larger colony size, and increased honey

yields [67]. This also sparked commercial interest in

dsRNA/RNAi-mediated antiviral treatments [67], and

raised concerns regarding potential off-target effects

and the use of RNAi-based insecticidal crops [98]. A

subsequent laboratory-based study demonstrated that

pre-treatment of larvae and adults with DWV-specific

dsRNA prior to DWV-infection via feeding resulted in

increased survival and decreased virus titers [65��]. Like-

wise Apis cerana larvae pre-treated with virus-specific

dsRNA had reduced levels of Chinese Sacbrood virus

following infection via feeding [70].

One of the hallmarks of RNAi-mediated antiviral

responses in insects is siRNA production. Small interfering
www.sciencedirect.com 
RNAs produced by Dicer-2 cleavage are 21–22 bp in

length, with an approximately 19 bp double-stranded

RNA core, 50-monophoshate ends, and two-nucleotide

single-stranded overhangs at the 30-hydroxyl ends; the

single-strand siRNA retained in the holo-RNA Induced

Silencing Complex (RISC) is modified (20-O-methylated)

at the 30-end (reviewed in [99]). The first molecular evi-

dence of virus-specific siRNAs in honey bee samples was

obtained by Northern blot analysis [64�,70]. Recently,

Chejanovsky et al. evaluated siRNA populations isolated

from bees obtained from either CCD-affected or unaffect-

ed colonies using high throughput sequencing and deter-

mined that there were more virus-specific (i.e., IAPV, KBV,

and DWV) siRNA reads in CCD-affected samples

[66��,69��]. These siRNAs were predominantly 22-nt long

and distributed throughout the virus genome [66��], indi-

cating that the dsRNA replicative intermediate form of the

IAPV genome was the Dicer substrate (reviewed in [100]).

Further analysis of the IAPV-siRNAs from CCD-affected

samples determined that most were negative-sense, and

may thus serve as guide sequences that target the

(+)ssRNA IAPV genome [66��]. High throughput sequenc-

ing of small RNAs obtained from Varroa-infested, DWV-

like, and VDV-1-infected bees identified a greater number

of positive sense virus-specific siRNAs than negative sense

siRNAs, and showed that DWV-like virus and siRNA
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abundance were proportional [69��]. Interestingly, pupae

with low virus levels that were exposed to few Varroa mites

had 5-times more siRNAs than viral genomes, suggesting

that when mite-pressure was low, the honey bee RNAi-

mediated defense system was able to overcome virus

replication [69��].

Results to date indicate that honey bees utilize RNAi as

an antiviral defense mechanism. Future studies that

show increased virus copy number in response to exper-

imental knock-down of dicer-like and/or argonaute-2
would provide additional evidence of an RNAi-mediated

defense strategy in honey bees. Likewise, demonstrat-

ing siRNA incorporation into the RISC by sequencing

only 20-O-methylated siRNAs would provide additional

experimental support for honey bee antiviral RNAi. The

relative contribution of RNAi and other immune mech-

anisms requires further examination in the context of

specific viruses, in different developmental stages and

castes, and in a range of colony health (i.e., weak,

healthy, CCD-affected). Genome integration of IAPV

also requires further examination [64�], since in D. mel-
anogaster, both genome-integrated RNA viral sequences

and RNAi are involved in limiting and maintaining

persistent virus infections [63]. Together, these and

other studies will reveal the relative role of RNAi in

reducing or eliminating viruses in individual bees and

colonies.

In D. melanogaster, Dicer-2 not only participates in RNAi,

it also serves as a dsRNA sensor that upon binding results

in the transcriptional activation of genes with antiviral

function including vago [72] (Figure 1). Interestingly,

Dicer-2 is a DEAD-box helicase motif containing protein,

similar to the RIG-I-like family of mammalian cytosolic

dsRNA sensors [72]. Recent evidence in honey bees

suggests that dsRNA, regardless of its sequence-specific-

ity, triggers an antiviral response that decreases viral

burden [73�]. Also, vago expression was increased in

pupae that were orally infected with DWV [69��]. Tran-

scriptional profiling of Sindbis virus-infected and dsRNA-

treated bees three days post-infection indicated that

metabolic pathways were perturbed in both treatment

groups. In addition, endocytosis and eicosanoid signaling

pathways were differentially regulated in virus-infected

bees, and dsRNA-treated bees differentially regulated

genes involved in oxidative phosphorylation. The major-

ity of differentially expressed genes were not involved in

characterized innate immune pathways, albeit AMP ex-

pression was reduced (i.e., apidaecin and hymenoptaecin).

Transcriptional changes in response to non-virus specific

dsRNA (i.e., dsRNA-GFP) in developing honey bee

workers were evaluated in a study aimed at investigating

the off-target effects in RNAi-mediated gene knock-

down experiments [74]. This study identified 1400 differ-

entially expressed genes, and gene ontology analyses

determined that the affected genes included those
Current Opinion in Insect Science 2015, 10:71–82 
involved in development, metabolism, immunity, stress

response, and RNA processing and transport [74].

Several transcriptional level studies in honey bees impli-

cate the involvement of uncharacterized genes/pathways

in antiviral responses [18��,69��,73�,101��,102��]. Howev-

er, the roles of genes in the Toll, Imd, Jak-STAT, JNK,

and RNAi pathways are the best characterized. Central

players in honey bee immune signal transduction cas-

cades include insect orthologs of a well-characterized

mammalian transcription factor NF-kB, including Dor-

sal-1A, Dorsal-1B, and Relish (Figure 1, Tables 1 and S1).

Nazzi et al. determined that dorsal-1A expression is key in

limiting DWV infection [102��]. Activation of NF-kB-

family transcription factors results in the production of

AMPs, which have unknown roles in antiviral immunity,

and numerous other less well-characterized genes

[19��,48��,103–105]. Symptomatic young bees experi-

mentally infected with IAPV via feeding exhibited in-

creased expression of Toll pathway members (i.e., toll-6,

cactus, and hymenoptaecin) [101��], whereas transcriptional

profiling of IAPV positive bees from naturally infected

colonies did not implicate either the Toll or Imd path-

ways in antiviral defense [18��]. Young bees experimen-

tally infected with Sindbis virus via injection and

harboring very low levels of other bee pathogens

expressed less apidaecin and hymenoptaecin than mock-

infected controls [73�]. Similarly, neither ABPV-chal-

lenge nor ABPV and E.coli co-challenge via injection

resulted in AMP production (i.e., Defensin-1, Abaecin,

and Hymenoptaecin) in adults or larvae, indicating that

ABPV may suppress bee immune responses [106�].

There are few general trends in the transcriptional re-

sponse of honey bees to viruses due in large part to the

relatively small number of studies performed to date and

due to differences in virus-challenge methodologies (e.g.,

infection via injection, oral infection), experimental vs.

natural infections, tissues examined, post-infection assay

time, and developmental stage of the bee [107�] (i.e.,

IAPV [18��,101��,108], DWV [44��,69��], SBV [70], CCD-

affected [109], and Sindbis virus [73�]). Furthermore,

variability between experimentally infected-bees may

be attributed to differences in immune gene regulation

between individuals within and between colonies, purity

and strain of virus inoculum, varied microbiomes, and

prevalence of pre-existing pathogens. In addition, there

are relatively few predicted genes (�25%) that are in-

volved in well-annotated pathways; 33% of the DEGs in

naturally IAPV-infected adults had Drosophila orthogs

and could be assigned putative function [18��]. That said,

differential expression of genes in immune, endocytic,

and metabolic pathways are common to several data sets,

but the directionality of regulation varies between studies

and bee developmental stage [18��,73�,101��]. Several

investigations have focused on IAPV due to its association

with colony health and the development of methods to
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produce IAPV-augmented infectious stocks via passaging

bee viruses in pupae [108]. In adult bees, IAPV abun-

dance is highest in the gut and hypopharyngeal gland and

low in hemocytes (insect blood/immune cells) and the fat

body, a tissue involved in metabolic activities (insect

liver) [18��,77,110,111]. Transcriptional profiling of

IAPV-infected adults revealed differential expression of

over 3000 genes [18��]. Functional analysis determined

that genes involved in signal transduction and immune

responses exhibited increased expression and that genes

involved in metabolism and mitochondrial dysfunction

had reduced expression [18��]. In addition, IAPV-infec-

tion resulted in increased expression of genes involved in

the TCA cycle II, protein ubiquitination, and eIF2 sig-

naling, and that IAPV-infection reduced expression of

genes in the g-glutamyl cycle [18��]. Chen

et al. determined that IAPV-infection also perturbed

expression of genes involved in insect immune pathways

(i.e., oxidative phosphorylation, ABC transporter func-

tion, endocytosis, phagocytosis, TGF-beta signaling, Tor

signaling, MAPK signaling, Jak-STAT signaling, and

lysosomal degradation) [18��]. Specific immune genes

with increased expression in IAPV-infected adult honey

bees include Jak/STAT pathway members (i.e., cbl, stat,
pias, and hopscotch), Tor pathway members (i.e., gbl, mo25,

dmel, and eIF4B), MAPK members (i.e., pointed, phi, and

corkscrew), and genes involved in endocytosis (i.e., egfr,

pastI, rabenosysn, and vacuolar protein sorting-associated
protein 37B-like) [18��] (Figure 1, Tables 1 and S1). It

is noteworthy that IAPV-infected larvae had a different

suite of DEGs with little overlap in the adult dataset

[18��]. Pupae infected with IAPV exhibited variable

expression of ribosomal RNAs and increased expression

of ribosomal protein S5a (RPS5), and glutathione S-

transferase 1 [108]; bees from CCD-affected colonies

also had increased rRNA expression [109]. The transcrip-

tional profiles of the fat bodies from young, IAPV-

infected worker bees [101��] shared the most genes with

IAPV-infected adult bees [18��], and had little overlap

with DEGs in bees infected with either E. coli bacteria

[112] or microsporidia (Nosema spp.) [113], indicating that

honey bee antiviral responses are distinct from immune

responses mounted against other parasites. Increased

expression of argonaute-2 and dicer-like in response to

IAPV-infection also supports the role of a distinct antivi-

ral response involving RNAi, Toll, and Jak-STAT path-

ways [101��]. The research performed to date is

informative, but additional studies are needed to better

understand honey bee antiviral immune mechanisms at

the transcriptional level (e.g., mechanisms of regulation

of gene expression and the role of splice variants) and

beyond.

Viruses and other stressors
The focus of this review is honey bee host–virus inter-

actions, and honey bee antiviral responses, but honey

bees live in a complex environment. The effects of
www.sciencedirect.com 
viruses on bees, and the functionality of the bee immune

responses, may be affected by the presence of other

pathogens [12��,19��,20], the microbial context of infec-

tion (microbiome [114�,115�,116–117]), environmental

factors including agrochemical exposure [104,118,119�,
120,121�], and adequate nutrition [122�,123�,124]. Several

studies indicate that bees infected with multiple patho-

gens have increased mortality and CCD-affected samples

have a greater number of pathogens than control colonies

[9��,12��,14�]. While it is widely accepted that mite

infestation is detrimental to honey bee colonies and that

mites also serve as virus vectors [40–42], the mecha-

nism(s) of synergistic detrimental interactions have not

been fully elucidated [34,44��,45��,102��,105].

Nazzi et al. investigated the combinatorial effects of mites

and virus in both field and laboratory settings from the

colony to the molecular level [102��]. They determined

that high mite infestation coupled with increasing levels

of DWV from June to October resulted in increased

colony mortality [102��]. Transcriptome (RNASeq) anal-

ysis of adult bees in these colonies revealed lower ex-

pression of 19 immune genes including dorsal-1A,

pathogen recognition receptors (AmSCR, B5 and B7 scav-
enger receptors, and C-type lectin 8), and immune signaling

pathway members including hem, tak1, and socs [102��]
(Figure 1). Bees from colonies with both high mite and

DWV levels exhibited increased expression of other

immune genes including genes involved in pathogen

recognition (PGRP-S2, nimC2, eater-like) and serine pro-

teases [102��]. Laboratory experiments confirmed that a

combination of mites and DWV, but not mites alone,

reduced dorsal-1A expression in adult bees [102��]. Also,

larvae in which dorsal-1A expression was reduced by

RNAi-mediated knock-down harbored a greater number

of DWV genome copies [102��]. Recent studies by Kuster

et al. demonstrated that DWV virus abundance increased

up to 72 hours post experimental wounding or Varroa
mite exposure [44��]. Assessment of the transcriptional

responses to wounding and mite exposure at times rang-

ing from 24 to 240 hours post-capping demonstrated

increased expression of immune genes (i.e., abaecin, api-
daecin, defensin, hymenoptaecin, PGRPs, PPOact, and relish)

and DWV infection (up to 72 hours) and reduction of mite

numbers in conjunction with immune activation [44��].
Cluster analysis suggested co-regulation of defensin and

relish, and apidaecin and hymenoptaecin, whereas abaecin
and PPOact were not associated with other immune gene

regulation [44��]. Interestingly, results to date indicate

that mite pressure, independent of transmission, results

in increased levels of DWV-like viruses with a VDV-1 CP

coding region [69��]. The interactions between the honey

bee host, Varroa destructor, and viruses are not fully

understood and require further investigation. Since honey

bee colonies located in Newfoundland and Labrador,

Canada [125], and several Hawaiian islands lack V. destruc-
tor [126], these populations provide unique opportunities
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to examine the effects of viruses on colony health and

immune regulation.

Two sides to the story — host vs. virus
genetics
The genetic background of the host has implications on

susceptibility to virus infection and disease severity. This

is particularly relevant for honey bees as they live in

colonies of � 30,000, the majority of which are sterile,

genetic-half sisters, since queens typically mate with

12 drones [127]. Colony level diversity due to queen

polyandry reduces the prevalence of honey bee diseases

[128] and may result in varying transcriptional responses,

variation between individual hemocyte populations, and

differences in social immune mechanisms (e.g., grooming

behavior, propolis production) [110,129]. Moreover, ge-

netic diversity is not limited to the host, as the majority of

honey bee viruses are RNA viruses with error prone

polymerases that generate virus quasispecies over the

course of infection [130]. Different virus variants within

particular quasispecies populations may have greater or

lesser pathogenicity in a particular host organism. In

addition, different strains of honey bee viruses exhibit

differential pathogenicity (i.e., DWV and IAPV)

[18��,69��,126]. Recent studies determined that DWV

strain prevalence was reduced in the presence of mites

[126] and the recombinant strain of DWV, DWVv, is more

virulent than other DWV-like viruses [69��]. A greater

appreciation of the existing virus genomic diversity across

the globe is needed to better evaluate the effects of

distinct virus strains on colony health. The development

of infectious virus clones that are amenable to mutation

(reverse genetic systems) are needed to verify strain-

specific virulence and determine mechanism(s) of en-

hanced virulence or increased tolerance. Honey bees

may vary in their degree of virus tolerance [79��,131].

This should be explored at both the individual and colony

levels, since the information gained may guide the use of

virus susceptibility as an additional selectable trait in

honey bee breeding programs [129,132,133]. In addition,

further use and development of immortalized honey bee

lines (i.e., AmE-711) [134��], long-term cell cultures

[135], and primary cell cultures [136,137], are required

to further the field of honey bee virology. Future use of

immortalized cell lines and infectious honey bee virus

clones will serve to normalize future studies and lead to a

better understanding of honey bee antiviral defense

mechanisms.

Conclusion
Investigating virus–host interactions throughout all

domains of life has led to a greater biological understand-

ing of fundamental cellular processes and host–virus

coevolution. Honey bee host–virus interactions likely

depend upon bee age or developmental stage, additional

biotic and abiotic variables, and genetics of both host and

pathogen. Only with additional research in laboratory and
Current Opinion in Insect Science 2015, 10:71–82 
field settings at both the individual bee and colony level,

will the mechanisms of honey bee antiviral defense be

understood. Undoubtedly, continued investigation of

honey bee host–virus pairs will lead to the discovery of

evolutionarily conserved immune defense strategies, as

well as reveal numerous unique co-evolved relationships

that are specific to each host–virus combination. It is a

critical and exciting time to investigate honey bee antivi-

ral response mechanisms.
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